京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看联通大数据时代的行业应用
“说话算数——2016联通大数据应用研讨会”这是联通在今年年初率先召开的运营商级别的大数据应用会议,一个旨在联通解析运营商大数据如何应用企业精准营销、行业创新和产业升级的论坛。
其实大数据已经不算什么新颖的名词,但是若论及大数据的应用,将其产品化,也许就不是我们能够认清、理解的范畴了。试问一堆看似无关的二进制资料,如何能够演变成可以打上品牌标签、丰富的产品体系和应用的呢?
全网终端数据集中化是个啥概念?继去年联通在乌镇大会上公布了首款大数据产品沃指数(涵盖行业指数和市场洞察两部分内容)之后,在这次的研讨会上,联通将沃指数中的“市场洞察”部分产品化、品牌化,而这个全新的品牌就是“数据魔方”。这也标志着联通作为巨头级大数据应用运营商,经过多年的数据累积、分析和开发,率先实现大数据的应用集中化、系统化、产品化、服务化。
截止到2015年底,联通大数据体系共涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,并已逐步在风险控制、金融服务、快消品、终端、汽车、旅游等细分领域实现了行业的创新应用。
现在看来,各家巨头均在争做自己的大数据,比如百度做,主要是在用户的搜索行为闭环里做大数据;阿里主要是在用户的电商行为闭环里做大数据;而腾讯的大数据则无法摒弃其基于用户社交行为的属性。各家在自己擅长的纵深领域随各有所长,但就数据的全面性、丰富性,以及获取渠道等因素来说,比起国字头的运营商则略显不足。中国联通的这些“全生命周期”数据不仅在数据维度上有更加多元化的优势,而且打破了很多P2P平台自建的模型获取、处理数据模式所形成的数据孤岛。
所谓数据黑洞,就是在进行大数据分析时,由于固定的分析模型所导致的大量信息的遗漏。数据其实最终一点就是在于流通,而以BAT为代表的企业,它所获得的全部数据均用于这个其自身体系之内,并没有任何将之开放出来的打算,也就是说这些数据是只进不出的。这便影响了数据需要“流通”的属性,既不利于营销,也不利于更加高效的去触达受众。
反观联通的大数据,其覆盖所有移动终端的广度和深度已不言而喻。通过综合维度的数据分析,联通大数据可以对特定的人群进行非常深入、精准的用户画像;通过智能的算法和分析,联通大数据能够精准找出目标和结果,准确发现用户需求变化与趋势,借以弥补单一纵深的数据维度,有效回避了“数据黑洞”所可能造成的信息遗漏,使企业可以更加了解自己的产品和用户,从而帮助企业提升市场洞察决策能力和精准广告销售能力。
如何让这些技术和产品在商业价值上有所体现呢?联通在大数据的金融、汽车、电商和快销品的各个领域,进行了很多积极的探索和商业化的应用。
例如,在与某车企的合作中,联通大数据就充分利用自身优势为该车企提供了详细的数据分析报告,以便该车企在接下来的销售策略调整中做出更准确的决策。
在这份分析报告中,首先是车企向运营商提供了样本用户,即已经是车主的存量用户的画像的分析。通过科学的大数据方法论,匹配出在几个亿的用户里面的潜在用户,再通过对潜在用户的消费能力以及消费欲望做具体分析,得出该用户是否为此款车型的精准客户。分析出汽车消费的精准用户群之后,通过相对这个群体在移动端对竞品车型的搜索、APP使用情况、驾龄以及地理位置分布等检测数据,精确的分析出与竞品的差异化。有了这些数据的支撑,该车企在之后的销售策略调整上无疑占据了市场主动权。
除此之外,联通大数据与金融产品、风险控制领域的成功案例也让大数据产品的价值在行业应用方面充分发挥。作为对传统风控模型的有益补充,联通大数据能够数据分析深度挖掘数据可用价值,进而弥补传统数据维度不全的现象;并可以优化风控模型能力,提高风险定价精细度,使其数据价值更加清晰,从数据的广度、深度、鲜活度等维度协助风控机构建立更加完善的风险管理视图。
现阶段用户的行为数据,尤其是网上行为数据,已经逐渐被纳入到信用风险模型中,成为判断个人信用、风险程度的变量。而联通大数据所具备的全面性、强相关性和实效性等特点,使其提供的用户信用评估更完整、更清晰。
目前,联通大数据已经开始实践跨行业的各类应用。在数据安全和数据应用监管方面,始终遵循严格的信息安全体系和流程,以确保数据安全、规范、合理地应用于金融、征信、精准营销等各个行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16