京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不在于“大”而在于“用”
近日,国家发改委公布《关于组织实施促进大数据发展重大工程的通知》,提到四个“重点支持”,即大数据示范应用、大数据共享开放、基础设施统筹发展、数据要素流通(数据分析师培训)。“开展创业创新大数据应用,实施大数据开放行动计划”“整合分散的政务数据中心,探索构建国家数据中心体系”等提法也引起社会关注。
“大数据”是一种规模大到在获取、数据存储、数据管理、数据分析方面,大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转等特征。海量数据和奇思妙想加以链接,孕育着巨大价值。《2015年中国大数据发展调查报告》显示,2015年中国大数据市场规模达到115.9亿元,增速达38%。面对庞大的市场,不仅各地政府在积极“圈地”,各大数据企业亦纷纷从中寻求商机。
数据作为一种资源,在“沉睡”的时候是很难创造价值的,需要数据挖掘。有人把大数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“用”。
如何提升大数据价值?首先要实现数据公开。数据开放是大势所趋,信息使用的边际收益是递增的,信息流动和分享的范围越大,创造的价值就越高,而线上、线下数据化和数据开放正是信息大范围流动的两大前提。推动数据开放和流通在发达国家已成为共识。自从“互联网+”上升为国家战略后,中央不断加大力度推动数据开放,为大数据的公开奠定了坚实基础。实施大数据开放行动计划,建立统一的公共数据共享开放平台体系,其用意正是在开放共享。
其次是要进行数据评估。大数据产业的核心枢纽是数据交易,而数据资产评估、定价是交易的核心。不过,目前大多数政府、企业确实是拥有很多数据,但仅仅限于“数据大”,而不是大数据,也并不了解自身大数据资产的价值。当前,我国缺乏一个共识性的数据资产价值评估模型或参考模型,也没有关于数据资产价值的准确定义。此次发改委发布促进大数据发展重大工程的政策,有利于大数据评估体系的建立。
最后,是要培养大数据人才<数据分析师培训>。大数据是一种虚拟化的数字及其运算逻辑,不仅需要高端的计算机知识,更需要综合掌握数学、统计学、信息工程等相关学科知识。目前国内的大数据人才储备远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。
大数据已经成为国家重要的战略性资源和商业创新的源泉,充分挖掘并应用大数据这座巨大而未知的宝藏,将数据变成“慧说话”的活数据,将成为政府精准管理社会的法宝和企业转型升级的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16