京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言进行数据分析:包
数据分析师在做数据分析时,会用到很多技术,R语言是数据分析师必不可少的分析工具,下面我们就对如何用用R语言进行数据分析:包。所有的 R 函数和数据集是保存在(packages)里面的。只有当一个 包被载入时,它的内容才可以被访问。这样做一是为了高效 (完整的列表会耗去大量的内存并且增加搜索的时间), 一是为了帮助包的开发者防止命名和其他代码的中的名字冲突。 这里,我们仅仅从用户的角度来 描述这个问题。
可以使用下面的命令查看你当前环境中安装的包
> library()
命令中没有参数。为了载入某个特别的包(如包 boot ,其中包含的函数来自 Davison & Hinkley (1997)),使用 如下命令
> library(boot)
用户可以使用函数CRAN.packages()连接因特网 (也可以通过 Windows 和 RAqua 的图形界面上的Packages菜单访问) ,并且可以自动更新和安装包。
为了查看当前有那些包载入了,可以用
> search()
产生搜索列表。有一些列表虽然被载入但不会 出现在搜索列表中。
为了查看已经安装的包的所有可以访问的帮助主题列表, 可以使用
> help.start()
这将启动一个HTML形式的帮助系统,然后通过Reference部分链接到所有包的列表。
标准(基本)包构成 R 原代码的一个重要部分。 它们包括允许 R 工作的的基本函数,和本文档中描述的 数据集,标准统计和图形工具。 在任何 R 的安装版本中,它们都会被自动获得。
许多不同作者为 R 捐献了好几百个包。 其中一些包实现了特定的统计方法,另外一些 给予数据和硬件的访问接口,其他则 作为教科书的补充材料。一些包(推荐 包)和二进制形式的 R 捆绑发布。
包有自己的命名空间(namespaces),并且现在所有基本的和推荐的 的包都依赖于包datasets。命名空间主要三个作用: 它们允许包的作者隐藏函数和数据,即只允许内部用户使用, 它们防止函数在一个用户(或其他包的作者)使用 相同名字时被破坏,它们提供了一种 访问特定包的 某个对象的方法。
例如,t()是 R 里面的转置函数,但是用户 可能会定义一个函数叫t。命名空间 防止用户定义的函数居先和破坏 矩阵转置的函数。
有两个操作符和命名空间相关。双冒号操作符::选择一个特定命名空间得到的函数定义。 在上面的例子中,转置函数总是可以通过base::t使用,因为它是在包base中定义的。 一个包中的函数可以通过这种方式 访问。
三冒号操作符:::可能会出现在一些 R 代码中: 它有点像双冒号操作符,但可以访问隐藏对象。 用户还可能使用函数getAnywhere(), 它会搜索多重包。
包常常是包之间依赖的(inter-dependent),载入其中一个可能会引起其他包 的自动载入。上面提到的冒号操作符同样会引起 相关包的自动载入。当有命名空间的包自动载入时, 它们不会被自动加入 搜索列表。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07