
数据分析,无处不在
作为一个比较活跃的年轻人,在大学期间除了读书外,我还参与过很多活动。大三时,我当过半年的境外黄金期权交易代理,自己有时也交易过几笔,有赔有赚。临毕业,组织过二手书回收,由于旧书价格和需求估计错误,最后亏得血本无归,事后总结,是没有好好分析市场和竞争对手(二手书店)。从那时候起,我就留心寻找有关市场分析方面实用知识的课程,
真正让我下决心参加数据分析师培训的,是回家时无意听到的一件事。20073年上半年,东昌府区某县开始投资建设铝厂,不久就出现资金短缺、无法周转的情况,当时合伙人四处融资,也曾经找上我父母。但由于厌恶风险和不了解行情等原因,父母并没有投钱。2014年春节期间,亲戚来串门,闲聊时讲起了某铝厂效益非常好,投资人全都得到了丰厚的红利。这时我才意识到这个铝厂就是当年那家资金链断裂、面临倒闭的铝厂。这件事告诉我,机遇在人人面前都是平等的,关键是你看自己能不能把握了,如果当时我能帮父母分析建设铝厂这个项目的话,说不定就抓住了这个机会。
带着对知识的渴求,我参加了2011年北京数据分析师培训,培训结束后,感触良多。我深深的体会到,数据分析是一门科学,同时也是一门艺术。现在使用学到的知识回头来分析当年的旧书交易,我总结了犯的错误:
第一,高估了市场需求。当时我只是觉得新生中购买旧书的人应该不少,就开始回收旧书。如果简单统计一下我所住的楼层中,有多少人购买了旧书的话,就会发现,大约9个人中才有一人购买旧书。而且,随着人们生活水平的提高,新生大都直接购买全新课本。
第二,收购旧书没有针对性。大学的课程多种多样,有一些课程是必修的,另外一些是选修的,参加必修课的人数肯定比参加选修课人数多,所以收购必修课旧书就更容易出手。当时我没有仔细分析,结果买断了大批无用书籍。
第三,忽略了竞争对手。学校的二手书店和我提供同样的业务,学生要买书时第一反应常常是去二手书店,我应该在同学中间多做宣传,吸引他们到我这来买书,比二手书店方便也便宜。
第四,没有计算现金流。学生毕业后新生入学前这两个月中,我必须屯放收购来的书,租用了学校外面的一间房。后来发现两个月的租金构成了我总成本的一半以上。
通过数据分析课程的学习,我已经掌握了市场调研、数据采集、分析预测和编制现金流量表这一基本项目分析流程,旧书变废纸的惨剧再也不会发生了。
此外,数据分析的科学性来自于其实用性,它来源于人类实践活动,也能回归到日常生活中。我母亲在银行工作,经常购买一些理财产品和基金项目,但从来没有计算过收益率。我按照课程习题中所学方法,帮母亲算了一笔账,发现活期存款加短期高利率理财产品的组合的收益率仅仅是定期存款的一半。做生意的人偶尔出现闲置资金,买一些短期理财产品很适合,但平常老百姓对于资金的流动性要求不是很高,购买短期理财产品就不如定期存款。
数据分析知识的用处不仅仅体现在日常生活之中,也体现在人们的工作当中。在我研究生期间,曾经接触过一个帮某电影网站建设数字版权管理系统(主要用处是让看电影的用户付费)的项目。使用数据分析,我计算了一下这个项目的成本和收益:由于是网络项目,其建设期只有半年,建设期资金在期初一次性投入,这笔资金主要分为网站给学校的劳务费用和使用数字版权管理系统时,向Adobe公司购买许可证的费用,以及购买服务器的费用。假设半年后系统成功运行,付费用户的数量来源于已经注册的非付费用户和每月新增用户两部分,那么付费用户数量对应于时间的函数应为一个修正指数函数和一个直线函数的相加。
通过引用优酷网收费用户增长数据,我得出了最终结论:在用户每次观看电影收费两块钱和折现率取7%的情况下,资金回收完成需要大约两年的时间。后来和网站经理的交流中,他们靠经验也得出了需要两年多才能回本这一结论。当时我感慨,通过数据分析,我作为一个技术人员竟然能站在资深网站经理的高度上来看问题。
数据分析在我们工作生活中无处不在,作为一门专业技术,它能帮助我们打理细节,算清楚账;作为一种思想,它教导我们以分析的眼光来看待问题,透过表面看清本质,独立思考。随着我国经济发展,市场化程度逐步提高,无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策和做出工作决定之前的重要环,数据分析师的市场无疑是巨大的,即使在别的专业领域,项目数据分析也能使人如虎添翼。
希望在2016年,CDA数据分析师的队伍会像雨后春笋般不断壮大,数据分析思想会成为人们生活的一部分。作为新一代的年轻人,我会用自身实践,把项目数据分析行业发扬光大,为社会做出自己的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10