
大数据初创企业面临的五大挑战
近几年,数据逐渐成为驱动业务的主要推动力。 更重要的是,大数据是可以帮助企业改善策略,提高运营效率和加速增长。
75% 的龙头企业说,他们已经或计划在未来几年在大数据基础设施方面布局。大量的新的和令人兴奋的大数据初创公司出现来满足企业客户日益增长的需求。
虽然大数据吸引力巨大,但是考虑到66% 的创业公司一般会在12个月失败,大数据初创公司们仍然面临着很多挑战。
挑战一 缺乏人才
大数据市场在不断增长,60%的领导者认为他们今年在大数据运营上会花费更多,只有5%预测预算会减少,最大的问题在于,这种增长将超过其实现它所需的人才和规模应用。
据麦肯锡的报告称,美国的大数据人才需求在2018年将达到 170万,大约在同一时间,美国数据市场价值将达到 415亿美元。随着行业的发展,人才技能差距将拉大。没有简单的解决方案,是唯一真正的修复是随着时间的推移,人才自然会增加以满足市场需求。
(这里还有一点讽刺,因为许多大数据初创企业试图通过自己的软件来解决市场上人才缺乏的问题,但他们同样面临招不到人。)
挑战二 人才成本高
71% 企业和IT组织认为自己在利用数据方面刚达到平均水平或滞后。显然需要提高整体人才能力和教育现有的劳动力。目前在员工的培训上,为了跟上新开发产品需要大量成本。
这样的培训运营费用在2013年全球达到1300亿,考虑到数据业务的快节奏的性质和随后的需要更多的人员和持续培训,这些成本只会持续上升。
挑战三 解决理想与现实的冲突
在最近《华尔街日报》上 一篇有关Hadoop 的文章上黛博拉·盖奇说,:一些评论把大数据捧地过于高了,对大数据的”炒作”使许多组织盲目的为采用而采用:他们急切地拥抱工具,但往往不关注他们的需求,只是因为这些工具似乎是最受欢迎的(Hadoop是一个例子)。
进一步复杂化的是,大数据平台本质上是厚数据。这使得供应商很难去表达它的功能和优点,甚至更难让客户们去理解。这就是为什么, 据Gartner 说,到2017年,60%的大数据项目将无法超越试点和实验,并将被放弃。 让大数据项目更加落地是未来的重点。
挑战四 融资障碍
大数据在风投界获得了极大的关注和惊人的资金, Hortonworks和 Dataminr的 融资近1亿美元就是很好的证明。 但在许多方面,争夺现金变得不利于新公司。
由于行业的发展,风投们会更亲睐具有挑战性的企业家,很多公司喜欢Palantir,MongoDB和Mu Sigma (至少有2亿美元投资)。 因为资金增加了,在某种程度上我们可以预期投资者变得更加初步承诺投资,而不是投资于更成熟的新锐品牌。
挑战五 更残酷的竞争
全球大数据预计在2015年产值达到 1250亿美元 ,创业并不孤单; 他们面临SAP微软和IBM这样的数十亿美元的大公司的残酷竞争。
这些巨人可以释放功能更新产品,收购同类公司。他们的资金是无限的,而初创企业必须更加精细化他们的产品只是为了维持他们的现金消耗速率。
实际上,这是一件好事。初创公司成功的最佳方式和关注一个点和把它做好,大公司总是在寻找方法来获得竞争优势。 如果你在存储、分析等方面有极大的优势,被收购也是个不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01