
9月10日,工业和信息化部在北京召开媒体通气会,表示将按照国务院的部署,与国家发改委一起牵头,组织各部门、各地方全力做好《促进大数据发展行动纲要》的实施工作,重点抓好我国大数据技术和产业的创新与发展,提升大产业支撑能力,培育新业态新模式,并从五个方面开展工作。
一是支持大数据技术和产业创新发展。目前,工信部正在制定《大数据产业“十三五”发展规划》,还将出台促进大数据产业发展的推进计划,统筹布局大数据技术和产业发展。促进规划、标准、技术、产业、安全、应用的协同发展,为《行动纲要》的实施提供技术和产业支撑与保障。组织实施“大数据关键技术及产品研发与产业化工程”,加强自主创新,通过相关项目和资金引导支持关键技术产品研发及产业化;开发面向工业、电信、金融、交通、医疗等数据密集型行业的大数据应用解决方案;力争形成先进的技术体系、完善的产品体系和高效的应用服务体系。
二是促进大数据与其他产业的融合发展,着力发展工业大数据,加强产业生态体系建设。组织实施“工业和新兴产业大数据工程”,围绕落实《中国制造2025》,支持开发工业大数据解决方案,利用大数据培育发展制造业新业态,开展工业大数据创新应用试点。促进大数据、云计算、工业互联网、3D打印、个性化定制等的融合集成,推动制造模式变革和工业转型升级。围绕落实《国务院关于积极推进“互联网+”行动的指导意见》,以加快新一代信息技术与工业深度融合为主线,以实施“互联网+制造业”和“互联网+中小微企业”为重点,以高速宽带网络基础设施和大数据等信息技术产业为支撑,积极培育新技术、新产品、新业态、新模式。集中资源重点培育和扶持一批龙头骨干企业,鼓励中小企业特色发展。组织实施“大数据产业支撑能力提升工程”,建立和完善大数据产业公共服务支撑体系,加快培育自主产业生态体系。
三是推动大数据标准体系建设。目前,工信部已经指导全国信息技术标准化委员会组建由130余家单位组成的大数据标准工作组,组织起草了《大数据标准化白皮书》,制定大数据标准体系,已经开展数据质量、数据安全、数据开放共享和交易等方面的多项国家标准的立项和研制工作,同时还要积极参与ISO/IEC、ITU等国际标准制定工作,与国际同步发展。
四是支持地方开展大数据产业发展和应用试点。目前工信部已支持和指导北京、上海、贵州、广州、陕西等地大数据产业和应用发展,这些地方先行先试,主动探索,已初见成效。如支持贵阳·贵安大数据产业集聚区创建工作,在出台产业扶持政策、开展数据共享交易、法律法规等方面成效显著。授予陕西省西咸区创建软件和信息服务(大数据)示范基地,鼓励当地大数据产业创新发展。北京、上海、广东等地方政府在支持大数据产业和应用发展等方面各具特色,走在全国前列。下一步,还将进一步动员和支持各地方、各行业、各部门开展大数据技术、产业、应用、政策等方面的探索和实践,利用相关项目资金,引导和支持在重点地区和工业等重点行业开展应用示范,并总结经验、加快推广。
五是加强大数据基础设施建设,探索和加强行业管理。结合工业和信息化部正在实施的“宽带中国”、“建设互联网强国”等战略,落实《关于数据中心建设布局的指导意见》,指导数据中心科学布局,加快推动宽带普及提速,提升互联网数据中心业务市场管理水平。同时还需从法规制度入手,加强行业管理和安全保障。研究制定网络数据采集、传输、存储、使用、管理的标准规范。加强对隐私信息保护、网络安全保障、跨境数据流动的管理,组织开展相关的专项检查和治理。推动和配合相关部门组织开展数据共享、开放、交易、安全等方面的立法研究工作。解决制约大数据产业发展的体制机制因素和不确定性的市场因素,为产业和应用发展营造良好的法规和市场环境。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10