
如何快速打造一站式大数据分析平台_数据分析师
引言:舆论已经把大数据推上了巅峰,但是大数据在理论与应用之间仍存在不小距离。为了简化大数据应用难度,能否用统一的平台一站式帮助企业解决全链大数据分析的难题?针对这个问题,永洪科技经过多年的研究和探索之后给出的答案是“一站式大数据分析平台”。
近日,由由经管之家、CDA数据分析师主办的主题为“云顶之上,生态纵览”的“大数据生态纵览峰会”在北京举行。数十位来自全国各地的大数据行业知名专家、领军企业高管与上千位相关行业从业者汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
刚刚过去的2015年,我国政府相继出台了关于积极推进“互联网+”行动指导意见和关于促进大数据战略、关于促进大数据发展的行动纲要等文件,并将实施网络强国战略和国家大数据战略写入十八届五中全会公报,将产业发展和强国之策相匹配,对十三五相关产业起到关键指导作用或者是一种关键的提示。
显然,大数据已经成为国家赢得现代竞争的战略性因素,但是,真正懂得利用大数据的企业还为数不多。正如CDA协会秘书长王霜峰所言,在实际应用中,很多企业的管理层特别是传统企业的管理层做出决策的时候更多是因为主观因素而不是靠数据分析和数据挖掘。
大数据作为一个新兴领域,在理论与实践,在技术与应用之间都存在不小的距离。可喜的是,现在已经有越来越多的企业尝试拥抱大数据。不过,如何更简单、快捷地做大数据分析?如何让业务人员也能够参与或主导数据分析、数据挖掘?
永洪科技联合创始人 谢玲
有没有一个平台能够一站式帮助企业搞定从数据准备到深度分析全链大数据分析的难题?针对这些问题,永洪科技经过多年研究和探索之后给出的答案是“一站式大数据分析平台”。在刚刚举行的永洪科技2015年度用户大会上,永洪科技正式发布了“一站式大数据分析平台”。
在“大数据生态纵览峰会”上,永洪科技联合创始人谢玲发表的《打造一站式大数据分析平台》主题演讲中指出,数据分析过程应该包括三个阶段:数据准备、探索式分析和深度分析,而永洪科技打造的一站式大数据分析平台正好对应着这三个阶段。
首先是数据准备阶段。客户在做数据分析过程中,需要对接各种类型的数据。这些数据可能来自企业各种系统数据,包括外网数据或者一些表格文本日志数据,这些数据可能相对原始一些,达不到分析的要求需要处理,例如粗粒度。这个过程是比较漫长也比较辛苦,那么是不是这个状态的数据就不可以做分析了呢?客户只需要将数据清洗成可以使用中间数据模型皆可,就可以做一个轻度建模,这就是永洪科技自服务数据准备阶段。
其次是探索式分析阶段。在这个阶段由业务人员或者IT人员来进行操作,他们可以根据需要对数据做各种组合,以及指标和维度的匹配,可以选择合适的计算方式和展现形式。谢玲分享了探索式分析一条实践经验:将建模层与业务层进行隔离才能得到一个最佳的探索式的效果。
最后一个阶段是符合客户探索模式的深度分析。当前面的一些组合分析不能满足客户的需求时,就需要做一些数据挖掘分析了。在这种场景下,客户往往面对的都是一些未知数据,它们的特征是不明显或者不能确定从哪些维度需要怎样组合才能得到所希望的深度分析,这个时候,就需要利用挖掘算法来支撑。
深度挖掘是很多客户可望而不可求的能力,毕竟深度挖掘并非一般人能玩的转,而CDO又是行业里的稀缺人才。但是,很多时候客户确实需要一些数据挖掘的算法来解答一些问题。
永洪科技一直也在思考对策:除了探索式分析之外,一站式大数据分析平台还能够让业务用户轻松使用深度分析。例如,归类、分类、回归和时序等重要环节。
谢玲指出,正是因为看到了客户的数据分析存在这三个阶段,永洪科技才顺应需求打造出现在的一站式大数据分析平台,希望给用户提供解决全链大数据分析问题的一致性体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10