京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何快速打造一站式大数据分析平台_数据分析师
引言:舆论已经把大数据推上了巅峰,但是大数据在理论与应用之间仍存在不小距离。为了简化大数据应用难度,能否用统一的平台一站式帮助企业解决全链大数据分析的难题?针对这个问题,永洪科技经过多年的研究和探索之后给出的答案是“一站式大数据分析平台”。
近日,由由经管之家、CDA数据分析师主办的主题为“云顶之上,生态纵览”的“大数据生态纵览峰会”在北京举行。数十位来自全国各地的大数据行业知名专家、领军企业高管与上千位相关行业从业者汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
刚刚过去的2015年,我国政府相继出台了关于积极推进“互联网+”行动指导意见和关于促进大数据战略、关于促进大数据发展的行动纲要等文件,并将实施网络强国战略和国家大数据战略写入十八届五中全会公报,将产业发展和强国之策相匹配,对十三五相关产业起到关键指导作用或者是一种关键的提示。
显然,大数据已经成为国家赢得现代竞争的战略性因素,但是,真正懂得利用大数据的企业还为数不多。正如CDA协会秘书长王霜峰所言,在实际应用中,很多企业的管理层特别是传统企业的管理层做出决策的时候更多是因为主观因素而不是靠数据分析和数据挖掘。
大数据作为一个新兴领域,在理论与实践,在技术与应用之间都存在不小的距离。可喜的是,现在已经有越来越多的企业尝试拥抱大数据。不过,如何更简单、快捷地做大数据分析?如何让业务人员也能够参与或主导数据分析、数据挖掘?
永洪科技联合创始人 谢玲
有没有一个平台能够一站式帮助企业搞定从数据准备到深度分析全链大数据分析的难题?针对这些问题,永洪科技经过多年研究和探索之后给出的答案是“一站式大数据分析平台”。在刚刚举行的永洪科技2015年度用户大会上,永洪科技正式发布了“一站式大数据分析平台”。
在“大数据生态纵览峰会”上,永洪科技联合创始人谢玲发表的《打造一站式大数据分析平台》主题演讲中指出,数据分析过程应该包括三个阶段:数据准备、探索式分析和深度分析,而永洪科技打造的一站式大数据分析平台正好对应着这三个阶段。
首先是数据准备阶段。客户在做数据分析过程中,需要对接各种类型的数据。这些数据可能来自企业各种系统数据,包括外网数据或者一些表格文本日志数据,这些数据可能相对原始一些,达不到分析的要求需要处理,例如粗粒度。这个过程是比较漫长也比较辛苦,那么是不是这个状态的数据就不可以做分析了呢?客户只需要将数据清洗成可以使用中间数据模型皆可,就可以做一个轻度建模,这就是永洪科技自服务数据准备阶段。
其次是探索式分析阶段。在这个阶段由业务人员或者IT人员来进行操作,他们可以根据需要对数据做各种组合,以及指标和维度的匹配,可以选择合适的计算方式和展现形式。谢玲分享了探索式分析一条实践经验:将建模层与业务层进行隔离才能得到一个最佳的探索式的效果。
最后一个阶段是符合客户探索模式的深度分析。当前面的一些组合分析不能满足客户的需求时,就需要做一些数据挖掘分析了。在这种场景下,客户往往面对的都是一些未知数据,它们的特征是不明显或者不能确定从哪些维度需要怎样组合才能得到所希望的深度分析,这个时候,就需要利用挖掘算法来支撑。
深度挖掘是很多客户可望而不可求的能力,毕竟深度挖掘并非一般人能玩的转,而CDO又是行业里的稀缺人才。但是,很多时候客户确实需要一些数据挖掘的算法来解答一些问题。
永洪科技一直也在思考对策:除了探索式分析之外,一站式大数据分析平台还能够让业务用户轻松使用深度分析。例如,归类、分类、回归和时序等重要环节。
谢玲指出,正是因为看到了客户的数据分析存在这三个阶段,永洪科技才顺应需求打造出现在的一站式大数据分析平台,希望给用户提供解决全链大数据分析问题的一致性体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07