京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这次通过一个实例来讲解一下协同推荐的问题。在实际生活中,我们会经常收到当当,卓马逊等购物网站发来的商品推荐邮件。很奇怪卓马逊是依据什么(数据分析师)来给我发一些相关商品的推荐,但是今天我们就假定他是根据协同推荐的机制来实现这一功能的吧。
很多时候购物网站都是根据其他用户的评价给一个用户推荐商品或者图书等。很多购物网站都会有这种长尾效益,用户购买或者评价的商品都是少数,而大多数商品只是得到很少几个用户的评价。所以存在数据稀疏的问题。这里就叫“cold start”问题。SlopeOne算法可以用来解决这个问题,这个算法很简单,易于实现且效率较高。
SlopeOne的基本概念很简单,例如用户X,Y和A都对项目1打了分。同时用户X,Y还对项目2打了分,用户A对项目2可能会打多少分呢?如下表1-1
用户对项目1的评分对项目2的评分
X53
Y43
A4?
根据SlopeOne算法,应该是:4-((5-3)+(4-3))/2=2.5.我想这个应该是很好理解的,实际上就是找到对项目1和项目2都打过分的用户,算出评分差的平均值,我们就可以推测出对项目1打过分的用户A对项目2的可能评分,并向用户A推荐新项目。这里可以看出SolpeOne有一个很大的优点,在有很少数据的时候也能得到一个相对准确的推荐,这一点可以解决“cold start”问题。当然,我们这里的情况是最简单的,根据项目1的评价估计项目2的评价,如果要根据好几个项目的评价来估计某一个项目的评价就要用到加权算法(weighted SolpeOne)。如果有100个用户对项目1和项目2做了评价,1000个用户对项目3和项目2也打了分。显然这两个的权重是不同的。我们的计算方法:(100*(rating 1 to 2)+1000*(rating 3 to 2))/(100+1000)
使用基于SolpeOne算法的推荐需要以下数据:
1)有一组用户
2)有一组项目(items),例如图书,商品等
3)用户对其中某些项目打分(rating)表达他们的喜好
SolpeOne算法要解决的问题是:对某个用户,已经知道他对其中一些项目的评价,向他推荐一些他还没有评分的项目,以增加销售机会。数据分析师认证
一个推荐系统的实现包括以下三步:
1)计算出任意两个项目之间评分的差值
2)输入某个用户的评分记录,推算出对其他项目的可能评分值
3)根据评分的值排序,给出评分最高的项目列表
第一步:例如我们有三个用户和四个项目,用户打分的情况如表1-2
项目用户1用户2用户3
Item1544
Item2454
Item343N/A
Item4N/A55
在第一步中我们的工作就是计算出项目之间两两打分之差,计算出如下矩阵1-3
Item1Item2Item3Item4
Item1N/A0/32/2-2/2
Item20/3N/A2/2-1/2
Item3-2/2-2/2N/A-2/1
Item42/21/22/1N/A
首先要定义一个数据结构来存储该矩阵中的每个打分情况:
public class Rating
{
public float Vlaue {get; set;}
public int Freq {get; set;}
public float AverageValue {
get {return Value/Freq;}
}
}
用一个Dictionary来保存这个结果矩阵,Dictionary的key是Item1Id加上Item2Id,值是Rating:
/************************************************************************/
/* 评分差均值矩阵 */
/************************************************************************/
class RatingDifferenceCollection : Dictionary
{
//获得评分差值矩阵中的key值
private string GetKey(int Item1Id,int Item2Id)
{
//return Item1Id + "/" + Item2Id;
//根据差异矩阵的对称性来简化存储
return (Item1Id < Item2Id) ? Item1Id + "/" + Item2Id : Item2Id + "/" + Item1Id;
}
//判断矩阵中是否存在一对项目的评分差记录
public bool Contains(int Item1Id,int Item2Id)
{
return this.Keys.Contains(GetKey(Item1Id, Item2Id));
}
//获得评分差值矩阵中的Value值
public Rating this[int Item1Id,int Item2Id]{
get {
return this[this.GetKey(Item1Id,Item2Id)];
}
set {
this[this.GetKey(Item1Id, Item2Id)] = value;
}
}
}
接下来实现slopeOne类。首先创建一个RatingDifferenceCollection来保存矩阵,还要创建HashSet来保持系统中总共有那些项目:
//保存评分差异矩阵的字典
public RatingDifferenceCollection _DiffMarix = new RatingDifferenceCollection();
//系统中总共有多少项目
public HashSet _Items = new HashSet();
public void AddUserRatings(IDictionary userRatings)来实现差异矩阵的构建。
第二步:输入某个用户的评分记录,推算出其对其他项目的可能评分值,实现如下
//输入某个用户的评分记录,推算出对其他项目的可能评分值
public IDictionary Predict (IDictionary userRatings)
{
Dictionary Predictions = new Dictionary();
//遍历所有的项目
foreach (var itemId in this._Items)
{
//如果是该用户已经评论过的项目,忽略它
if (userRatings.Keys.Contains(itemId)) continue;
Rating itemRating = new Rating();
foreach (var userRating in userRatings)
{
if (userRating.Key == itemId) continue;
int inputItemId = userRating.Key;
if(_DiffMarix.Contains(itemId,inputItemId))
{
//在差异矩阵中找到相应的项
Rating diff=_DiffMarix[itemId,inputItemId];
itemRating.Value += diff.Freq * (userRating.Value+diff.AverageValue*((itemId
itemRating.Freq += diff.Freq;
}
}
Predictions.Add(itemId,itemRating.AverageValue);
}
return Predictions;
}
第三步就是测试了,根据对用户的评分推测来进行相应商品的推荐
userRating = new Dictionary();
userRating.Add(1,5);
userRating.Add(3,4);
IDictionary Predictions = test.Predict(userRating);
foreach(var rating in Predictions)
{
Console.WriteLine("Item"+rating.Key+"Rating:"+rating.Value);
}
输出:
Item2 Rating:5
Item4 Rating:6
因为矩阵的对称性,在代码中对差异矩阵的存储和相应评分项的存储都有所调整,这里不详细介绍了,完整的实现了一下这个算法,给出了一个Demo在附件中。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27