
一站式大数据分析平台,“洗剪吹”的执着
2015年,平台化的发展趋势日益明显,在大数据领域尤为突出。于是闻风而动的数据分析厂商也开始致力于构建一个快速、便捷的一站式大数据分析(数据分析师认证)平台,把数据分析过程的三个阶段,数据准备、探索式分析和深度分析全部涵盖。结果,一个专注“洗剪吹”的平台就此诞生了。
数据准备,“洗”尽铅华
在数据分析领域,数据准备是一切分析的前提所在。由于数据分析的核心是数据,但是并非全部数据是都可以直接使用的。由于数据可能来自于企业自身的数据收集系统,可能来自网上的其他企业,也可能是第三方数据收集机构,各种类型数据混杂在一起,水平参差不齐,导致很多数据并不能达到可处理条件。但是如果简单粗暴的过滤掉这些数据又将造成不可估量的损失,因此平台中,数据的前期处理准备工作便成了整个分析过程的前提所在。
但是这一前提却成为了很多平台的困扰所在。如果采用大公司的ETL进行处理,虽然可以清洗的比较精细,但是消耗的时间却有所提升,且未必符合后续分析的要求,违背了平台化的初衷;如果采用的手段过于简单,则可能导致一些数据处理不合格而造成数据流失。2015年,一些新的产品给出了答案,以永洪科技最新的一站式大数据分析平台Yonghong Z-Suite V6.0为例,数据并没有进行彻底的清洗,而是利用自服务把原始数据进行加工,做一些诸如数据清洗、表关联关系设定等轻量级的数据建模,最终变为可分析使用的中间数据。而利用这一方案作为数据准备方案,在保证了速度和用户的体验感的同时,所得到的处理结果对后续的使用也有较好的适应。
“剪”的断,理不乱,是探索式分析
探索式分析是平台的主体,在数据准备完成后可以提供给客户全面的数据分析(数据分析师培训)服务。这一阶段的优势在于用户可以根据业务需求灵活的变换数据组合维度和指标,调整指标的计算方法,选择适配的展现形式,通过符合用户逻辑直觉的交互式体验,得出探索式分析结果。
从中可以看出,探索式分析最大的特色就在于他的灵活性和不可预见性。当用户针对某事件有疑问时,平台可以从多角度、多维度做出解答,同时由于角度的不确定,给出的答案也就就有不可预见性,用户可以迅速的从更多的角度了解的产品可能存在的问题。探索式分析,这种灵活到自己都想不到的特质所能带来的也就不仅仅是授之以鱼,还能促使用户提升看待问题的视野,透过问题看本质,得到数据分析真正的价值,做到授之以渔。
另外,与传统平台相比,探索式分析还提升了其易用性和用户体验。以往来讲,由于传统分析所得出的结果表现方式单一、不够灵活等原因,B2B行业是不太注重用户体验的。这就导致了数据分析最终的结果只有公司顶层人员才能得知,据此作为公司改进的判断依据。但毕竟一线人员才是数据的直接产生者和执行者,他们每天面对新的问题会有新的需求,以往的方式对这个矛盾则显得束手无策。而探索式分析则可以很好的解决这一点,使用难度较低,更多的人可以去用,去分析,去解决,去得到他们所需要的东西,然后将所得结果灵活的呈现给公司的各个层面,充分发挥数据分析的优势,提升企业整体水平。
深度式分析,“吹”尽黄沙始到金
探索式分析提供给客户数据分析的广度,而深入式分析则提供给客户深度。那么为什么客户会需要深入式分析呢?原因在于探索式分析是有自身的限制的。如果客户看遍千山,用尽所有维度依然未能解决问题呢?如果数据模式没有被完全识别,客户如何得知哪些维度是重要的呢?如果客户得到了探索式分析的结果,却感觉不够有说服力呢?在这种情况下,常规分析方法已经不能满足客户对数据分析的需求,这时深度分析就可以派上用场了。
深度分析可以在未识别的模式下,通过挖掘算法,对数据的特征、规律和预测给予分析人员指导。当客户面对未知数据时,难以确定从哪些维度入手,结果自然是没有维度可选。如果没有维度怎么办?自己创造维度。一直以来,深度分析对于很多客户来讲都是可望而不及的,其技术要求门槛较高,CDa人才稀缺,挖掘算法难度较大,让并不熟悉的基层业务人员学习使用更是困难。那么能否做到在不懂挖掘算法的同时还可以使用深度分析呢?平台可以做到。在找不到维度分析时,深度分析作为不属三界之内的第四维度被客户使用。针对业务人员常用的几个功能如聚类、分类、回归、时序等算法布置在平台内,降低使用难度,让基层人员亲自使用深度挖掘寻求自身所需。
在一站式数据分析平台中,数据准备阶段由自服务完成,迅速得到可数据分析师分析数据后,深度式分析与探索式分析进行有机结合,二者各司其职,互补互助。让基层人员在面对任何维度,任何层次的数据分析时都可以轻松应对。身为“洗剪吹”,就要有一颗吸引大众关注的心啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27