
大数据时代的人才工作创新
“大数据时代已经到来!”麦肯锡全球研究院的报告指出,数据正成为与物质资产和人力资本相提并论的重要生产要素。大数据带来的信息风暴正在变革我们的生活、工作和思维,带来一场新的思维变革、商业变革和管理变革。大数据将会给人才工作带来怎样的挑战与机遇?我们应当如何应对?
大数据时代的挑战和机遇
所谓大数据,又称巨量资料,其大小或复杂性使得无法通过常用技术以合理的成本并在可接受的时限内对其进行捕获、管理和处理。大数据分析,就是通过特殊的技术,从各种各样类型的海量数据中,快速获得有价值信息。
大数据正在改变着我们的世界。Google推出“流感趋势”项目,通过追踪像“咳嗽”、“发烧”和“疼痛”这样的词汇,准确判断流感在哪里扩散;沃尔玛使用大数据模式,分析社交网站海量数据,从“挖掘”顾客需求到“创造”消费需求,精准营销啤酒和尿布;洛杉矶警局用大数据计算模型安排警车巡逻,预测案件多发地段;通过分析淘宝、天猫、B2B、聚划算的商家的各种数据,阿里巴巴打造了一个信贷工厂,为平台上的卖家提供小额信贷服务。
可以预见,大数据在各行各业特别是公共服务领域,具有更加广阔的应用前景。政府人力资源社会保障部门,无论是人才服务、就业服务,还是社会保险,每天都在诞生海量数据,如何将这些原本碎片化的数据,进行全面科学地提取和数据分析呢,为我们的决策服务,是大数据带给我们的最大挑战和机遇。
从当前来看,大数据首先将给政府管理带来一场思维的革命:其一,对政府公共服务部门而言,决策挑战在于数据采集,而非简单存储。数据采集和监控的精细化,并纳入基础框架,这是大数据意识的体现。其二,大数据时代,很多数据在收集的时候并无意用作其他用途,而最终却将产生很多创新性的用途。如IP地址的跟踪,给招才引智团组出访提供了目的地参考。其三,知道“当下状况”,也就是对即时数据的掌握。管理者可以借助数据库,从数据收集中预见到发展前景,很快地将所获得信息及时分类并做出明智的决策,最终采取及时准确的行动。
大数据与人才工作创新
大数据在人才工作领域有哪些作为?当前可以看得到的前景是,数据分析师运用大数据技术,能够改进当前人才引进和管理的粗放模式,通过相关数据搜集、分析和应用,实现人才引进和服务的精准化,不断提高人才工作科学化水平。
精准分析产业发展与人才需求,提高引才效率。哪些产业有哪些企业,哪些企业有哪些人才需求,哪些新兴产业或技术需要引进人才,哪些高校聚集哪些人才,特定产业人才来自哪些科研院所,以往这些都是靠估算或抽样调查获得,而进入大数据时代之后,通过数据搜集和联机分析,就能形成点(企业)、线(产业链)、面(城市或地区)的完整分析,再用这份数据报告,按图索骥、招揽人才。当这些数据采集和运用具有一定年限积累后,可以引进数据挖掘技术,发现潜藏在数据背后的历史规律,同时对未来进行预测。例如,通过对IP地址的分析,可以清楚知道每天都是哪些人在访问网站,并定期做出网站访问表,据此确定引进人才的重点群体,从数据挖掘中找到那些更愿意回国创业的海外留学人才。
精准分析人才服务需求,优化人才服务。从粗放式管理向精细化管理转变,数据发挥着重要作用。大数据理念同样适用于人才服务领域。当前,各地都认识到人才服务的重要性,但还不能准确捕捉到人才的需求。如果能善用已有的数据,就能够从具体的指标和数据倒推出人才的驱动性需求。例如,现在许多地方都推出了一站式人才服务,将健康医疗、旅游休闲、子女教育、出入境服务、专题培训、创新创业服务、住房保障、文化服务等,都归入一张类似“市民卡”的服务卡。通过对人才使用这些公共服务的类别、次数、频率等数据的分析,就可以找出人才最需要和最常用的服务是哪些,根据这些数据再来优化服务布局,不仅能够使公共财政发挥最佳效应,也能真正把服务做到人才心坎上去。未来的人才服务借助大数据,将如同软件的升级,数据分析师通过对数据进行收集和分析,那些几乎无人使用的服务可以在版本升级中被去除,而频繁使用的功能则将得到进一步强化和完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29