
大数据应用获各路资本热捧 行业标准建立成发展关键
千亿产业机遇,让大数据产业成为全国各地布局抢占的下一个互联网+的风口。
大数据成布局抢占下一"风口"
去年6月,李克强总理主持召开国务院常务会议,就指出要运用大数据等现代信息技术促进政府职能转变,提升政府服务和监管效率,造福广大群众。
工信部近期表示,将抓紧研究制定大数据发展的指导性文件,推动应用和产业相互促进、良性发展,为我国大数据产业和大数据创新发展探索积累经验。
地方政府更是积极向上,不断出台相关政策,持续推动大数据的发展,大数据成为各地布局抢占的下一"风口"。据悉,上海近日正在筹建数据交易中心,已报请上海市政府等待批复。对此,上海市经信委副主任邵志清表示,希望借助数据交易中心,推进数据市场的有序流动。而继去年4月贵阳成立国内第一家大数据交易所后,去年7月,武汉集中揭牌了长江大数据交易所(筹)和东湖大数据交易中心,紧接着12月,江苏盐城上线了运营华东江苏大数据交易中心平台,徐州、北京、哈尔滨等地也不甘示弱在筹建数据交易市场,广东则专门成立了省大数据管理局,重庆则提出到2017年形成500亿元大数据产业交易规模,建成国内重要的大数据产业基地,等等。
根据IDC的报告,截至2015年,全球大数据市场规模已成长到390亿美元的空间,到2017年,市场规模将突破500亿美元。IDC统计数据同时显示,2011年全球数据总量就已达到1.8ZB(1ZB等于1万亿G B,1.8ZB也就相当于18亿个1T B移动硬盘的存储量),而预计到2020年全球将总共拥有35ZB的数据量,增长近20倍,全球大数据产业链有望迎来新的重大发展机遇。
大数据应用迎来投资良机
目前,大数据已被广泛应用到政府公共管理、零售业、医疗服务、制造业等各大领域,并催生了千亿元的产业。因此,大数据的特殊功用与诱人前景,让各大巨头垂涎欲滴,这导致近一两年来互联网企业的投资与并购时刻围绕着获取大数据展开。
去年11月21日,九次方大数据在北京召开发布会,宣布"完成两轮融资总计7亿元人民币,估值30亿"。此次融资,共有博信资本、建银财富等18家资本机构资参与,"大数据产业没有寒冬"的宣传令人印象深刻。而近年,百度祭出19亿美金高昂代价收购91助手;阿里巴巴斥巨资连续收购虾米、战略投资陌陌,并参股新浪微博,控股高德地图;腾讯除致力发展QQ,近年也大力发展微信营销,并购买、控股一些社交、通讯型创业公司;360则不惜血本依靠免费杀毒获取海量用户群,占据国内安全数据领域主平台。这些互联网巨头都明白,在未来掌握某生态圈便掌握这一领域的大数据,运用数据挖掘与分析便能演绎精彩成功的商业模式。
近两年是大数据市场主要培育期,而真正的业绩释放将是2016年,2016年将是中国大数据的产出年。预计在政策的不断推动下,大数据概念股有望获得提振,数据资源运营企业将受到资本市场的热捧。A股市场上,大数据概念股可分为五大类,第一类是与海量数据的存储和采集处理相关的公司;第二类是与数据中心建设与运营维护相关的公司;第三类是与视频化应用相关的公司;第四类是与智能化和人机交互概念相关的公司;第五类则是数据安全相关公司。
由于国内目前仍处于大数据时代逐渐爆发的前夜,综合考虑企业的受益确定性和潜在市场规模以及服务对象,可依主次先后关注:天玑科技、汉得信息、浪潮信息、远光软件、东方国信、美亚柏科、拓尔思等相关大数据上市公司。
行业标准建立成发展关键
目前我国大数据发展还存在五个方面的问题,包括信息孤岛普遍存在,跨部门、跨行业的数据共享仍不顺畅;一些地方误将数据中心建设视为大数据产业发展重点,盲目追逐硬件设施投资,未能主动推进大数据产业发展与应用需求间的对接;技术创新与支撑能力不足;数据资源建设和应用水平低;信息安全和数据管理体系尚未建立。
复旦大学数字与移动治理实验室在其2015年公布的《中国开放政府数据平台研究框架、现状与建议》中称,中国开放数据实践存在六个方面的主要问题:行业尚无共同标准、数据量少、价值低、可机读比例低,开放的多为静态数据,数据授权协议条款含糊,缺乏便捷的数据获取渠道,缺乏高质量的数据应用,缺乏便捷、及时、有效、公开的互动交流,让国内大数据一时很难做大做强。
据悉,目前国家正在从七个方面着手促进大数据的发展,包括完善组织实施机制、加快法规制度建设、健全市场发展机制、建立标准规范体系、加大财政金融支持、加快专业人才培养、促进国际交流合作。其中,建立标准规范体系是许多公共数据开放的重要条件,也是行业发展的关键。现阶段急需通过标准化的途径整合资源,形成统一的数据格式、接口、安全、开放等各类规范。
据悉,2014年底全国信息技术标准化技术委员会大数据标准工作组成立,开始统筹开展我国大数据标准化工作,正在研制的国家标准有10项,其中《信息技术大数据术语》和《信息技术大数据技术参考模型》等8项国家标准已经完成草案,即将公布实行。
距离真正的大数据时代还有很长的路要走,我们更需要冷静地思考,如何才能让技术更扎实而有效地落地,如何让标准统一规范,如何建立一个庞大开放的生态群,以能真正的挖掘到这座大数据金矿,做大做强我国大数据产业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10