
大数据 没有告诉我们的
如果说人类筚路蓝缕、披荆斩棘地跋涉几千年,就是为了克服广袤世界的未知和不确定性的话,我们似乎正在走进一个光明美好的新时代,这个时代叫做大数据时代。在这个时代里,随着IT技术的迅猛发展,数据的增长成了一个显而易见的事实。
谷歌前首席执行官施密特有一种流传甚广的说法,形象地描绘出了大数据之大:人类从直立行走到2003年所创造的知识,总计才5艾字节(1艾字节相当于10亿GB),到了2007年,短短几年间的数据存储已经超过了300艾字节。据统计,到2015年,全球网络数据流量将达到每年966艾字节,这标志着人类从数据的“池塘”达到数据的“海洋”。
而大数据也正在发挥它巨大的力量,给我们的生活带来更多的确定性和更多指引,至少在两方面给了我们前所未有的便捷——
第一,它帮助我们了解外界。世界的运转方式和规律正在被转变成各种数据,随意在搜索网站输入“大数据告诉你”这六个字,你就会收到无数关于我们的外部世界的精确解释。
如果你想实现财务自由,“大数据告诉你是否该长期持有某某基金”;如果你想买房子,“大数据告诉你一年中哪个月房价最低”;如果你想考研,“大数据告诉你考研到底难不难”;如果你想假期出行,“大数据告诉你国庆哪里最堵”我们不用再担心自己的决定是无凭无据、道听途说,因为大数据以科学统计的方式最大程度地给我们提供了行动的参考。
第二个方面或许是大数据对我们影响得更为直接的地方,它把人自身的活动方式也转化成了数据。行走的时候,运动手环会不停计算你走路的速度和距离,告诉你卡路里的消耗情况,作为你健身计划的参考;听音乐的时候,各种音乐软件会不停记录你选择的音乐类型和听歌频率,并会以这些数据为依据为你量身推荐一份私人歌单;网购的时候,购物网站会根据你浏览不同商品的频率和消费金额,计算出你的购物倾向,在你的网页上自动生成一份“你可能感兴趣的商品”苹果最新的ios9系统甚至在健康软件数据中的生殖健康这一项里,加入了性行为监测的功能,新近出现的一些app甚至能计算出人的性能力。
我们的身体、生活方式,在大数据时代,变成了清晰的、简明的、容易读懂的信息库。这些数据的背后是某种野心——通过数据解决那个困扰人类许久的疑难——“认识你自己”。数据在了解我们的身体、品味、喜好的过程中,发掘出我们是什么样的人、想要什么、应该怎么安排我们的生活。
对于孤独生活在冷漠的都市社会,时刻面对着未知与风险的现代人来说,有什么比一种以科学的名义出现的安全、准确、简单的生活指南更具有吸引力呢?可是,大数据能代替我们对自我的了解吗?它是不是以均一的、数字化的衡量方式抹杀了人之为人的多样性和丰富性呢?富有灵性的人是不是最后会变成一堆堆无趣的数据、一个个“空心人”呢?一个被数字量化的自我,会不会也是一个被粗暴简化的自我?人内在的心灵可以完全外化变成可处理的数据吗?爱情、美丽、自由这些都可以用数据来计算吗?
如果可以的话,数据,是不是变成了信息时代的新神——一个全知全能的、按照其律法生活就可以给人以幸福的神。
哲学家尼采在《快乐的科学》中说“上帝死了”,实际上说的是人类认知世界的那个权威死了。在尼采看来,这并不是一件坏事。因为权威的失去,反而给我们留下了独立思考、重估一切价值的机会。正是神灵的消逝,才让我们能够重获理性,重新出发去寻找真正的知识,去寻找生活的意义。
现在就断定大数据时代的到来对我们是好消息还是坏消息未免为时过早了。我们目前能做的,或许是在不断地刷屏、转发、点赞、分享的数据狂欢中冷静下来,把大数据真正作为一种工具,而不是把它变成惰于了解世界、了解自我的借口。大数据的推崇者们很喜欢借用一句苏格拉底的名言来标榜大数据的作用,但实际上这句话也适用于对大数据的反思,这句话就是——
“未经省察的人生不值得过。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13