
产业大数据前景可期 深度孵化模式重要性凸显
互联网的快速发展,使我们步入了一个全新的共享经济时代。信息的交互和数据的共享,促使产业升级转型,大数据成为热门议题。国家和企业间的竞争焦点正从资本、土地、人口、能源转向数据资源。
“大数据与传统行业的深度融合是一个重要的创新方向,掌握数据资产的企业群是大数据的首批和直接受益者。”盛山资产的创始合伙人甘世雄对《第一财经日报》记者表示。2015年,中国大数据市场规模达到115.9亿元,随着应用价值的逐步体现及大数据产业的发展,大数据应用将必然扩张到传统产业的方方面面,不断创造新的应用场景。
大数据不仅仅是数据,更是一项未经深度开发的产业领域,吸引着诸多投资者。
甘世雄称,大数据吸引诸多投资者不无道理。第一,市场潜力大,2015年,中国大数据市场规模达到115.9亿元,增速达38%,根据IDC报告,全球大数据市场年增长率达40%,2017年将达530亿美元;第二,数据增长快,数据量以接近几何数级的速度增加,据麦肯锡全球研究院预测,2020年产生的数据量将是2009年的44倍,接近35ZB;第三,应用领域广泛,各类行业兴起“大数据+”,例如金融、教育、医疗、智能硬件等;第四,商业价值高,在垂直行业的应用及商业价值得到认可,例如数据存储空间出租、管理客户关系、模拟实现、个性化精准营销等。
以美国为代表的发达国家在推进大数据应用上已形成从发展战略、法律框架到行动计划的完整布局。但是,中国大数据的基础构架和分析环节依然薄弱,在应用领域的行业分布也不够全面,这既是大数据产业的挑战也是机遇。
“如果通过大数据提升产业的效率,提升产业里面企业的决策水平、营销能力、供应链管理,包括制造,那么将产生一个非常巨大的市场机会。”华院数据CEO宣晓华对《第一财经日报》表示,除了给企业带来增值效应,大数据已经产生了新的商业模式,使企业以大数据为商业模式来经营自己的业务。
对此,中关村大数据产业联盟副秘书长陈新河也表示未来大数据产业将达到万亿,大数据将通过各种网络,带来新的商业形态的变化。
“以前大部分的中小型企业还是停留在数字化或者说从数字到数据的过程,即使是一些上规模的企业,还远没有到数据资产。”华院数据COO麦星表示,大数据产业的发展前景毋庸置疑,但是数据分析和挖掘是一项高难度的技术活,创业的门槛也相对较高,需要业务人员对数学、算法、行业都有较深的理解,多种核心技能的打通往往需要几年时间才能够触类旁通。
“我们会分裂出来自己本身的核心能力进来,导入到这样的新公司里面。我们有专门人员做培育过程,培育团队、培育市场、培育产品。” 据麦星透露,华院数据的深度孵化和传统的投资基金有所不同,包括导入分析能力以及核心人才和培育,深度参与孵化公司的进展。
如何实现大数据和产业的应用对接、真正获取价值也是诸多大数据公司发展面临的难题之一。
“大数据经济不只是一个简单的运用数据的本体或者只是作为一个简单的粗加工来达到经济效益的部分。华院数据希望利用运营商的数据,掌握到更精细的客户的生命期。”华院数据的数据科学家尹相志举例说道,如果希望推广一些母婴的产品,以前的做法是客户到电商网站看了某一款产品之后才在广告上面不停地轰炸。但现在既然有了更完整的数据,透过完整的生命周期的监测,可以知道这个人已经进入到了备孕的状态、怀孕的状态,提早发送相关的信息,希望用这样的方式改变其认知,建立对于品牌的信心、理解,这样的方法不是那么直接的让人觉得是在骚扰他。如何让精准营销做得让大家感觉不到,这是未来发挥大数据经济非常重要的部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13