
21世纪是以生命科学为主导、科学技术迅猛发展的世纪,科技竞争力已成为决定国家前途和命运的重要因素,是推动经济发展、促进社会进步和维护国家安全的关键所在。医学在生命科学中占有极其重要的地位,卫生科技的创新和进步,将促进医疗卫生事业的发展,提高全民族的健康素质,增强中国的科技竞争力和综合国力。世界最新医学科研技术是包括医学、药学、分子生物学、数学、计算科学、以及大数据分析技术等多种学科和技术的综合。
大数据分析技术主要包括是以最新应用数学、前沿计算科学和信息工程学为核心,以数据挖掘、数据仓库、商务智能等智能化的信息科技技术为手段,它不仅能够大幅提高传统的医学科研技术,而且在最新的分子生物技术的发展中也发挥着关键的作用。
一项新技术的采用,往往意味着全新的方向。如同伦琴射线在医学上的应用,开创了全新的医学视角一样,随后的CT,MRI,B-US,PETS等新技术的采用一次次的推动了医学的发展,扩展了医生的视野,如今,影像学已经是不可缺少的组成部分。信息学的重点是对一切可观测的指标(如年龄,住址,性别,化验,治疗,影像等一切通过现有手段可以观测的数据)整合后,结合应用数学,系统工程学,进行再分析、再处理。
少量的个案往往不足以揭示规律和知识,当数量足够大时,规律才有可能显现。所以整合成数据仓库也是必要的。而规律并不仅仅浮在数据表面,所以统计学和数据挖掘成为必要的手段,而在线式的方法提高了速度,基于系统工程的向导式结构有利于稳定大数据分析质量。
当年伦琴射线引入医学的时候,一定不会想到今日的局面。而将KDD引入医学领域,在中国广阔地域,巨大的人口基数下,基于这些特点形成的巨大的卫生信息数据,仅仅是用在线式的传统方法就可以发现大量有价值的医学知识,而结合数据挖掘,数据仓库,系统工程,发现新知识的可能性更是大大增加了。
健康大数据分析技术
大数据分析技术主要包括:
以数据挖掘为核心的知识发现技术,
以数据仓库为核心的数据整合技术,
以商务智能为核心的智能决策技术。
一、以数据挖掘为核心的知识发现技术
以数据挖掘为核心的知识发现技术可以直接挖掘医学新知识,帮助科研人员加速取得科研成果,甚至重大科研发现。
运用多种数据挖掘技术探索数据规律,为科研人员的科研设计提供科学依据,为科研命题指明方向,保证了科研的成功率。
数据挖掘是一种突破传统的分析手段,为各类科研技术提供新的技术方法,大大缩短科研和分析周期,深入揭示医学潜在规律。
数据挖掘,又称知识发现(KDD),是从大量的数据中,抽取潜在的、有价值的知识的过程。数据挖掘所探寻的模式是一种客观存在的、但隐藏在数据中未被发现的知识。例如,KDD可直接挖掘疾病高发人群,疾病及症状间的未知联系,化验指标间的影响关系及化验指标与疾病间的潜在影响,对未知的检验项值进行预测等等。通过可观测指标推断不可观测指标,或通过简单易行的观测指标推断昂贵的或有创的指标。由简而知繁,由易而知难。再如,在科研设计中利用聚类分析、因子权重分析,我们可以对数据进行科学分组、考察多因素的不同权重、帮助确定析因分析或嵌套分析等不同的科研设计。KDD在医学中应用非常广泛,为医学研究提供传统方法不能企及的前沿技术手段,例如:
二、以数据仓库为核心的数据整合技术
以数据仓库技术为核心的医学数据整合系统,独立于已有的医疗机构业务系统,以全新的设计将分散的业务系统产生的不一致的数据进行整理、变换、集成,整合得到全面、高效、一致的信息。
数据仓库技术还使得对历史的全部海量数据进行在线的、实时的、深入的分析成为可能,并使其变得很轻松。
直接利用积累的现有医学数据,使科研成本大大降低,相同的的科研经费取得更多科研成果。
应用数据仓库的整合技术,使获得大数据科研样本数据易如反掌。
结合中国庞大的人口基数和横跨寒带温带热带的广阔地域,可建成世界上最大的卫生信息数据仓库,其全面的信息量是每个医务人员梦寐以求的。如能与世界各国合作,共享,整合,将成为与人类基因组计划齐名的壮举。
三、以商务智能为核心的智能决策技术
应用成熟的专业分析系统提供一致的准确的实时的数据分析,为各级各方面卫生决策提供可靠依据,使资源和效率得到优化,还能从经营决策和管理上获取经济效益和社会效益。
将商务智能技术(BI)应用于卫生决策分析,使决策者摆脱传统报表的束缚,以全新的先进的分析手段多维度地深入理解需要的数据,为广泛而深入的分析提供了新的有力工具。
专业的分析报表如累计贡献度分析,分摊百分比分析,嵌套排名分析等专业分析报表使决策者对历史和现状一目了然,对各种业务表现的因果关系能轻松的了如指掌。
健康大数据分析的应用
健康大数据分析技术在如下四个方面得到应用:
疾病与健康研究
环境与健康研究
医药生物技术研究
卫生宏观决策支持
大数据分析技术将在以上方面发挥着特殊的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10