京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国要在数据人才的培养上有所作为,否则数据强国将是可望而不可及;为保证数据人才培养的质量,中国需要制定培训院校的资质要求和各类数据人才的考核鉴定标准
据最新统计,中国网民已达到6.5亿以上,手机数量近13亿。中国政府的经济参与和调控能力在世界上首屈一指,所用的各种行政登记、工作报表、调查问卷数量巨大,管理着世界上人口最多的国家。不管是从商业大数据还是政府大数据的角度来说,中国都是名副其实的“数据大国”。正像最近由人民出版社出版的《大数据:领导干部读本》一书所称:“从全球占比来看,中国作为数据大国的潜力极为突出。2010年中国在整个数字宇宙中比例为10%,2013年占比为13%,2020年占比将达到18%。届时,中国的数据规模将超过美国的数据规模,位居世界第一。”
但数据大国不等于数据强国。数据强国最重要的标志不是数据拥有量,而是使数据产生价值的处理和分析能力。在大数据时代,数据已成为最有价值的生产资料。但是仅仅拥有数据不能形成生产力。就像石油埋藏在地下千万年,直到近代人类掌握了勘探技术和提炼工艺才使石油变成能源和多种化工产品。不同于自然资源,数据是人造资源。大数据技术的核心价值是它为人类提供了用海量甚至是全景观的数据达到更精准认知的新手段。它使实时、互动数据驱动的智能决策成为可能。依托覆盖几乎全球各个角落的互联网,数据时时刻刻在一个虚拟世界中传播碰撞,存储记录人类活动和自然界的方方面面。
走向数据强国的关键是提高和增强数据处理和分析的能力。这种能力有两方面的关键要素:(1)数据流通、采集、存取、处理所需的硬件软件和信息基础设施;(2)管理、操作、应用硬软件(包括机器学习)处理和分析数据的不同层次的数据人才。对于前者,中国通过政府和企业的大量投资正在追赶世界先进国家。而后者则是我们的软肋,不是短期内能填补的缺口。硬件、软件、网路、数据库等技术支持的价格在不断降低和商品化,数据获得的难度和费用也会不断改善。因此,在走向数据强国的过程中,最珍贵和难得的资源将是数据人才。最终的竞争也将是人才的竞争。
数据强国将需要多层次的数据人才。
将大数据变成智能以支持决策的过程中包括对海量数据的清理、分类、组织、存储、搭配、聚合等一系列的准备工作。每个亲身参与过大数据开发项目的数据科学家都知道,数据清理和准备要占开发时间的70%-80%,数据清理和准备与数据分析和建模是不同层次的工作,需要不同的技能。虽然一个合格的数据科学家应该懂得数据开发的全过程,但让数据科学家在数据清理和准备上花费太多时间是很大的资源浪费。迎接数据强国挑战之良策应是培养不同层次的数据人才,使之各有所长、各尽其能。
在互联网几乎无处不在的大数据时代,各行各业都需要拥有懂得如何应用数据创造价值的专业人才。这不仅是能建立数据模型的数据科学家和高级数据分析家,也包括数据采集、清理、整合、加工、存储的数据管理员,建立和维护数据库的数据工程师,能胜任日常数据分析和应用的数据分析师。老企业的转型和新企业的创立都离不开数据的应用。我们不但需要高级数据分析师和数据科学家,同时也需要数量更多的数据管理员、数据工程师、和数据分析师。
在实现中国经济从效益驱动向创新驱动的转型中,数据的应用将会起到越来越大的作用。这就要求企业和政府的管理人员提高使用数据支持决策的能力。目前在美国不断升温的大数据技术之一的自助可视化分析(Self-Service Visual Analytics)很可能在不远的将来成为每个管理者必备的技能。
数据人才的培养应通过多种渠道。高级数据分析家和数据科学家很适合在大学和研究生院培养。职业教育在数据人才培养方向上应注重于数据管理员、数据工程师、以及数据分析师。后三种数据人才的需求量远大于前两种高级数据人才。企业教育则可侧重于在职管理人员数据应用能力的培训和提高。各种渠道的培养都必须注重数据科学的研究和发展。
为保证数据人才培养的质量,中国需要制定培训院校的资质要求和各类数据人才的考核鉴定标准。数据科学是应用科学,数据人才必须亲身参与到数据应用的实际项目中去,在实践中提高数据应用能力。大数据时代的技术发展一日千里,数据人才的鉴定也必须与时俱进,定期重新认证。
《大数据:领导干部读本》一书的后记中指出:“中国面临着成为‘数据大国’和‘数据强国’,实现‘弯道超车’的历史机遇。”这个机遇是珍贵的,这个愿景是振奋人心的。中国成为数据大国是顺理成章的,但成为数据强国却是真正的挑战。迎接这一挑战的关键是中国要在数据人才的培养上有所作为,否则数据强国将是可望而不可及。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08