京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据告诉你真实的航空安全现状
对于经常乘坐飞机出行的人,最不愿意看到的新闻就是飞行事故,但对于统计出身的人来说,又有理性的数据证明,航空是目前地球上最为安全的交通方式。
按照国际航空运输协会的统计,只要一名普通乘客乘坐的是西方飞机制造商生产的飞机,那么他遭遇航空事故的几率低于五百三十万分之一。从事故发生的几率而言,就算是飞行时间最长的飞行员用一辈子的时间进行飞行,也很难超过两万架次。航空业事故发生几率非常低——即便是一个人天天坐飞机,也要一万四千年才有可能遇上一个航空事故。
在这个时候,网络和各种媒体上充斥各种各样的消息,人们的感性会战胜理性,统计学的知识也将让位给内心的感受。
关于航空安全,通过大数据的分析,至少可以告诉我们几个我们往往会误认的真理:
1、数据统计的结论毫无疑问的告诉我们,飞机是目前地球上最安全的旅行交通工具,比汽车、火车等等的安全级别高太多。
飞机重大事故发生的频率如何?
重大事故绝少发生,造成多人伤亡的事故率约为三百万分之一。航空是远程交通最安全的方式,而且它变得越来越安全。 30年前,重大事故的发生率为每飞行一亿四千万英里一次。如今是 14亿英里才发生一起重大事故,安全性提高了十倍。
坐飞机和坐汽车,哪个更安全?
据美国全国安委会对 1993~ 1995年间所发生的伤亡事故的比较研究,坐飞机比坐汽车要安全 22倍。事实上,在美国过去的 60年里,飞机失事所造成的死亡人数比在有代表性的 3个月里汽车事故所造成的死亡人数还要少。
2、对于单个人来说,飞机、火车或者汽车,安全出行的概率其实差不多。
从行驶的距离和死亡人数的关系而言,乘飞机旅行是最安全的旅行方式;但要是按照死亡人数和单次旅行时间的关系来看,火车与飞机一样安全,而乘汽车旅行的危险几率只是飞机的四倍;如果从死亡人数和旅行次数的关系来看,汽车要比飞机安全三倍,火车要比飞机安全六倍。
但人们必须注意到一种交通工具的可能性很难准确地与另一种交通工具的可能性相比较。飞机一次就有250名乘客和机组人员,而一辆汽车最多运载五名乘客。由此看来,飞机一次运载的人数是汽车的五十倍,但安全性却是汽车的六十倍(以行驶的距离为衡量依据)。对于单个乘客而言,飞机的安全性并不比汽车高出多少。
3、飞机事故造成的社会影响却比其他事故更大,原因是事故少但严重程度高,受关注度大。
4、美国的大数据专家通过对全球航空公司的运营数据的分析,揭示出,各国的航空安全指数实际上相差无几,并不是说发达国家的飞机就更加安全,当然,那些被制裁和处在混乱状态的非正常国家除外。
5、国外专家确实也得到了数据的结论,国际航班往往比国内航班出事故的概率要低,所有的国家都一样,并不是发达国家的国际航班就更安全。
6、各家航空公司的安全系数有差异,位于德国的航空事故数据评估中心 (JACDEC)综合全球60家航空公司30年的飞行里程以及事故数据,对各家航空公司的安全性进行了评估。根据他们的数据,芬兰航空是目前全世界最安全的航空公司,已经有50年没有发生严重事故。紧随其后的是新西兰航公、国泰航空和阿联酋航空。中国的海南航空排名第8,东航、国航和南航分别位列36、43和48名。最安全的9家航空公司在过去30年中没有损失一架飞机,也没有造成任何生命损失。但是这些公司中有多家成立时间较晚,且运营时间没有达到30年,例如阿联酋的阿提哈德航空2003年才成立。
7、飞机上的不同座位的安全程度相差无几,事故之后的安全只要取决于事故的严重程度和幸运,并不是前舱比后舱更安全,或者中间比两边更安全;
8、飞行过程中的安全概率是不一样的,起飞和爬升到巡航高度,下降和着陆是飞行中最容易出问题的两个阶段。用极简单化的说法,起飞时在发动机推力和结构整体性方面对飞机的要求最高,而接近和着陆则对驾驶舱的机组人员要求最高。约有四分之三的严重事故都是在这两个短暂的飞行阶段中发生的。
9、大飞机的安全系数并不比小飞机高多少,其执行的安全标准是基本一致的,人们对小飞机的安全性质疑多来自偏见。
10、欧美公司宣称自己的飞机比其他飞机更安全。西方飞机制造公司生产的喷气式和螺旋桨式飞机的数量分别占到了世界航空市场的95%和80%。在2012年的23起导致乘坐人员死亡的事故之中,只有三起是使用了西方飞机制造公司所生产的飞机。但这个数据也有问题,对于飞行这样的大数据,这种比例的数据之间进行对比实际上意义不大,其实,造成这样的差异的原因,主要应该是与飞机飞行的区域和国家的安全管理有关更为密切。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12