
大数据告诉你真实的航空安全现状
对于经常乘坐飞机出行的人,最不愿意看到的新闻就是飞行事故,但对于统计出身的人来说,又有理性的数据证明,航空是目前地球上最为安全的交通方式。
按照国际航空运输协会的统计,只要一名普通乘客乘坐的是西方飞机制造商生产的飞机,那么他遭遇航空事故的几率低于五百三十万分之一。从事故发生的几率而言,就算是飞行时间最长的飞行员用一辈子的时间进行飞行,也很难超过两万架次。航空业事故发生几率非常低——即便是一个人天天坐飞机,也要一万四千年才有可能遇上一个航空事故。
在这个时候,网络和各种媒体上充斥各种各样的消息,人们的感性会战胜理性,统计学的知识也将让位给内心的感受。
关于航空安全,通过大数据的分析,至少可以告诉我们几个我们往往会误认的真理:
1、数据统计的结论毫无疑问的告诉我们,飞机是目前地球上最安全的旅行交通工具,比汽车、火车等等的安全级别高太多。
飞机重大事故发生的频率如何?
重大事故绝少发生,造成多人伤亡的事故率约为三百万分之一。航空是远程交通最安全的方式,而且它变得越来越安全。 30年前,重大事故的发生率为每飞行一亿四千万英里一次。如今是 14亿英里才发生一起重大事故,安全性提高了十倍。
坐飞机和坐汽车,哪个更安全?
据美国全国安委会对 1993~ 1995年间所发生的伤亡事故的比较研究,坐飞机比坐汽车要安全 22倍。事实上,在美国过去的 60年里,飞机失事所造成的死亡人数比在有代表性的 3个月里汽车事故所造成的死亡人数还要少。
2、对于单个人来说,飞机、火车或者汽车,安全出行的概率其实差不多。
从行驶的距离和死亡人数的关系而言,乘飞机旅行是最安全的旅行方式;但要是按照死亡人数和单次旅行时间的关系来看,火车与飞机一样安全,而乘汽车旅行的危险几率只是飞机的四倍;如果从死亡人数和旅行次数的关系来看,汽车要比飞机安全三倍,火车要比飞机安全六倍。
但人们必须注意到一种交通工具的可能性很难准确地与另一种交通工具的可能性相比较。飞机一次就有250名乘客和机组人员,而一辆汽车最多运载五名乘客。由此看来,飞机一次运载的人数是汽车的五十倍,但安全性却是汽车的六十倍(以行驶的距离为衡量依据)。对于单个乘客而言,飞机的安全性并不比汽车高出多少。
3、飞机事故造成的社会影响却比其他事故更大,原因是事故少但严重程度高,受关注度大。
4、美国的大数据专家通过对全球航空公司的运营数据的分析,揭示出,各国的航空安全指数实际上相差无几,并不是说发达国家的飞机就更加安全,当然,那些被制裁和处在混乱状态的非正常国家除外。
5、国外专家确实也得到了数据的结论,国际航班往往比国内航班出事故的概率要低,所有的国家都一样,并不是发达国家的国际航班就更安全。
6、各家航空公司的安全系数有差异,位于德国的航空事故数据评估中心 (JACDEC)综合全球60家航空公司30年的飞行里程以及事故数据,对各家航空公司的安全性进行了评估。根据他们的数据,芬兰航空是目前全世界最安全的航空公司,已经有50年没有发生严重事故。紧随其后的是新西兰航公、国泰航空和阿联酋航空。中国的海南航空排名第8,东航、国航和南航分别位列36、43和48名。最安全的9家航空公司在过去30年中没有损失一架飞机,也没有造成任何生命损失。但是这些公司中有多家成立时间较晚,且运营时间没有达到30年,例如阿联酋的阿提哈德航空2003年才成立。
7、飞机上的不同座位的安全程度相差无几,事故之后的安全只要取决于事故的严重程度和幸运,并不是前舱比后舱更安全,或者中间比两边更安全;
8、飞行过程中的安全概率是不一样的,起飞和爬升到巡航高度,下降和着陆是飞行中最容易出问题的两个阶段。用极简单化的说法,起飞时在发动机推力和结构整体性方面对飞机的要求最高,而接近和着陆则对驾驶舱的机组人员要求最高。约有四分之三的严重事故都是在这两个短暂的飞行阶段中发生的。
9、大飞机的安全系数并不比小飞机高多少,其执行的安全标准是基本一致的,人们对小飞机的安全性质疑多来自偏见。
10、欧美公司宣称自己的飞机比其他飞机更安全。西方飞机制造公司生产的喷气式和螺旋桨式飞机的数量分别占到了世界航空市场的95%和80%。在2012年的23起导致乘坐人员死亡的事故之中,只有三起是使用了西方飞机制造公司所生产的飞机。但这个数据也有问题,对于飞行这样的大数据,这种比例的数据之间进行对比实际上意义不大,其实,造成这样的差异的原因,主要应该是与飞机飞行的区域和国家的安全管理有关更为密切。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14