京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论道会展业与大数据二者关系
会展业与大数据结合的话题常被业内提及,但是大数据如何影响和服务于会展业、两者之间关系目前处于什么状态,至今还没有看到详尽的阐述。
我们寄希望于技术人士对大数据之于会展业的话题作详细的解读,因为泛泛而谈总有“忽悠”的感觉。
首先,一个最基本的判断是,会展业仍处在大数据运用的初级阶段。会展业是最重视数据的行业之一,但是在从一般数据向大数据过渡的过程中,会展业仍处在探索的初级阶段。
大数据的主要用途之一在于预测,即基于消费者洞察的分析和推断。因此,理想情况下产品的研发、设计应该基于大数据对消费者偏好的“捕捉”和归纳。具体到展览,在“展览立项”分析上,大数据还很少发挥作用。
在营销方面,会展业对大数据的利用也乏善可陈。无论在营销渠道的拓展和对营销渠道有效性的评估方面,都没有看到典型的案例。此外,大数据时代的一个重要特征是对数据的专业分析。即便从技术手段上可以实现海量数据的收集,没有专业的数据分析人员,对大数据的分析解读也无法完成,实现大数据效应最大化更无从谈起。在这方面,会展业还“任重道远”。
在会展大数据方面值得称道的领域主要体现在会展现场的管理方面。通过观众“跟踪”技术(RFID技术或蓝牙NFC技术),优化门禁系统,特别是跟踪观众在会展场馆的活动轨迹和规律,分析人们对产品及企业的关注度,并调整展览的运营管理。这方面已经有一些很好的实践和探索。利用上述技术,一方面,展商和买家(终端)可以在现场利用相关技术实现对彼此位置的准确感知,尝试更高效率的贸易合作;在展后,展商也可以查询哪些客户到过展台,对哪些产品感兴趣,以实现精准营销和产品结构及功能的调整。另一方面,主办方通过大数据了解客户喜好和感兴趣的产品信息,可以更好地对展览项目进行调整,为客户服务。
其次,会展业大数据面临的问题还有很多,主要涉及以下几点:
一、从数据来看,精准的数据库仍是会展项目主办方的主要工具,原因在于数据量。
对比其他诸多行业,会展业支配的数据量并不大。大数据之所以比数据多了个大字,是因为在数据的数量上、获取数据的速度和方式上、包括对数据的分析处理上的差异。其中,量是大数据的一个维度。从举办单个展览项目来看,目前主办方处理数据的量是有限的,即使规模达到几万平方米的大型展览项目,通过传统数据库以及传统的数据处理方式也能从容应对。
大数据关于样本=全部、重关联不求因果的理念,更多的是基于海量数据的现实。笔者个人观点:一旦数据数量可控,人们自然会回到因果分析上来。因果分析是人类探索自身和自然的终极理想,过去是将来也是。从这个意义上说,传统数据库通过因果分析实现精准营销和精细化运营仍然是会展业的主要操作方式。
二、大数据需要专业的数据分析能力。
笔者曾看过励展对中国部分行业出口目标市场的分析,总体感觉是,即使在对传统数据的挖掘和分析上,很多展览企业做得很不够,需要提高的地方还有很多。对于大数据,分析技术和能力要求更高。业内目前有一种倾向,过度关注数据采集技术和大数据的意义,对于数据分析能力关注极少。对于大多数企业而言,不要好高骛远,即便是踏踏实实地做好对传统数据的分析,也是个挑战。
三、在展览场馆的数据基础设施建设方面目前还有令人困惑的地方。
一方面,主办方对基础设施要求逐渐提高,最基本的带宽要求在很多场馆都没有达到;另一方面,一旦场馆对IT基础设施进行大幅度升级,学习重庆会展中心的做法,又会造成主办方的矛盾心理,对数据安全的担心增加。当然,这是个具有中国特色的问题,中国的场馆经营方对自办展的喜好或者说“情结”,尽人皆知。在中国的诚信环境下,主办方产生疑虑难以避免。
四、投入产出问题。
不同的企业对于大数据应该有不同的态度和方式。考虑问题的原则应该是投入产出比。总的说来,由于投入巨大,无论场馆方还是组织方只有比较有实力的企业才可以考虑在大数据方面进行投入。小企业即使有在大数据方面探索的雄心,也只能退而求其次,寻求与第三方服务商的合作。
最后,对会展大数据的研究和应用,目前所做的只是“九牛一毛”,远谈不上穷尽。
大数据除了在会展立项、营销、管理和运营等方面将产生积极作用之外,围绕人员流动密集、物流集中的会展活动应该还有其他层面的应用。其中,关键是投入产出比和利润模式问题。在利润模式方面,是有了清晰的利润模式再去收集数据,还是在数据的收集之后再去挖掘数据的其他使用价值和利润模式,是很多行业都会碰到的、令人困惑的问题。
以上是从非技术角度对会展大数据的粗浅看法,仅作引玉之砖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03