
大数据支撑区域商标品牌发展指数
实施商标战略带来的显著效果,为我省编制区域商标品牌发展指数提供了大数据基础。南京理工大学知识产权学院,是由江苏省、工信部、知识产权局共建的知识产权学院,承担了此次指数制定工作。经过了为期半年左右的数据调研、部门意见调研、地方意见调研、召开专家论证会等基础工作,构建了区域商标品牌发展指数报告。
“通过对2014年全省13个市域商标品牌发展状况进行调研,并按模型进行测算分析,得出商标品牌发展的内在规律。”南京理工大学知识产权学院常务副院长钱建平说,为了让指数更具指导性、针对性,商标品牌发展的内在规律总结为5个一级指标:品牌政策支持、品牌发展实效、品牌保护力度、社会协同效应、品牌发展潜力等5个指数。
“5个一级指标不仅有政策层面的支持、保护,还有企业主体角度的自我发展,基本涵盖了一个商标品牌发展的路径和需要的环境。”吴永才说,从各地指数发展情况来看,先发优势并不是高枕无忧,后来者完全可以实现弯道超越。
从全省整体来看,区域商标品牌发展现状整体良好,但是区域差异不小,镇江、泰州、宿迁品牌经济发展分别在苏南、苏中、苏北地区相对较弱。数据显示,2014年区域商标品牌发展指数排名前4位的分别是苏州、南京、无锡、南通。值得注意的是,这些地区的商标品牌发展指数与GDP排名正相关,也就是说,经济发展速度较快的地区,对商标品牌的发展保护重视程度也越高。苏州以0.8311的综合指数排位第一,遥遥领先于最后一位宿迁(指数仅为0.6238)。后5位为镇江、连云港、泰州、盐城和宿迁。“从总体来看,苏州的商标品牌发展走在全省前列。这与苏州经济发展状况密切相关,市场经济发达的地区,其经济发展就更追求市场的规范性,更注重品牌经济的推动作用。”钱建平说。
有意思的是,扬州、淮安、盐城等地区,其综合指数与GDP并不匹配,其中扬州GDP排名第八,区域商标品牌发展指数为第五,淮安的GDP排名第11位,其发展指数为第八,盐城的GDP排名第七,其发展指数则为第12位。
具体来看,在品牌政策支持指数方面,苏北地区的品牌政策支持指数较为突出,此项排名中,淮安以0.8141排名第一,徐州以0.7866排名第三,连云港以0.756排名第八。据了解,目前全省13个省辖市均设有品牌发展专门领导机构,但各地区领导机构运行情况有所差异,南通、苏州、常州和泰州机构较为活跃,南京市、淮安市经费投入较大,其他地区在相对活跃度、经费投入度上表现一般。
品牌保护力度、社会协同效应两个指数,也是从政策、社会环境方面对商标品牌的发展给予支持。其中,品牌保护力度指数主要包括商标侵权行政案件数量、商标侵权行政案件案值、移送司法的商标侵权行政案件数量、法院审理的商标案件数量和权利人品牌保护满意度。品牌保护最强的是苏州,以0.8870排名第一,南京、南通分列二三位。去年苏州商标侵权行政案件案值全省第一,具体数额比其他十二个市域加起来还要高。按照知识产权强省建设的要求,“十三五”期间,全省权利人满意度要达到80%,全社会品牌认知度超过75%,根据这一标准,目前各地方权利人品牌保护满意度、各地区社会品牌认知度均低于该目标。
在5个一级指标中,品牌发展实效指数最能给人直观感受,也最具代表性。这一指数包含的指标有国内有效注册商标数量、国际商标数量、地理标志数量、每万户市场主体拥有国内注册商标数量、驰名商标数量、江苏省著名商标数量、江苏省名牌产品数量、省重点培育与发展的国际知名品牌数量、自主品牌企业增加值占GDP比重和商标质押融资数量。其中,苏州以0.8679排名第一,排在最后一位的连云港仅为0.6094。目前各地区间差异较为明显,以国际注册商标数量来说,苏州是连云港的27倍多。全国每万户市场主体的商标拥有量超过1200件,我省无锡、苏州、南京、常州、扬州均达到或超过这一平均水平。
吴永才说,由于江苏省区域商标品牌发展指数涵盖内容全面丰富,包括了30项具体指标,为了更好地为地方商标品牌发展工作提供明确的指导性,有必要设置核心指标。因此,区域商标品牌发展指数从30个二级指标中选出了7个核心指标:品牌发展专项经费投入情况、国内有效注册商标数量、驰名商标数量、自主品牌企业增加值占GDP的比重、商标侵权行政案值、商标代理机构规模化发展水平和年度自主品牌企业增加值增长率。
为什么要设定这7个指标为核心指标?对此,省工商局商标处副处长张传博解释说,在设立核心指标时,主要遵循重要、导向和比例三个原则,将每个一级指标中最重要、权重最高的指标、最能体现一级指标内涵的指标设为核心指标,为各地开展商标品牌建设确立明确的导向。同时,指标之间也需要平衡,即核心指标个数与一级指标权重相适应。由于品牌发展实效指数是一级指标中权重最高的指标,因此将其中的三个指标设为了核心指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04