京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业网站后台统计分析我们主要分析那些模块
作为一个企业站点,我们更多的追求的是转化率,网站优化能否为企业带来真实的利益,很多时候必须借助网站数据分析,这些数据分析工具大家相比都比较清楚,常见的有百度统计、cnzz数据分析工具,51la等等,其实这些产品功能方面大同小异,我们主要通过分析那些方面来了解网站基础数据呢?好,咱们闲话短续,笔者通过一下几点和大家分享一下。
第一,网站的流量构成来源。我们必须明白网站流量的组成是什么?通过后台数据分析,点流量来源一般就会详细的列出我们网站的流量组成,比如搜索引擎、直接网址进入流量、其他推广流量等明白这些细节问题,我们就可以一目连然的对于网站流量构成有一个明确的了解,通过这个细节我们应该分析出流量主要构成有那些,那些渠道还可以继续进行优化增加导入流量,那些渠道是我们还没有注意但是是确实存在的,只有了解这些细节才能为网站优化推广策划、部署与之针对性较强的相关策略。
第二,搜索关键词分析。企业网站运维优化推广关键词分析占领者非常重要的比重,因为绝大多少有效的转化都是通过搜索引擎来的,搜索引擎优化无疑是影响转化非常重要的手段,分析的策略包括主关键词的排名和流量状况,网站长尾词转化的情况如何?那些针对性较强,我们重点部署的关键词是否稳定的获得了相关排名?一些潜在的长尾词我们要进行归类并通过相关的内页进行长尾词的优化和部署,可以说关键词分析是站长关注最多的一个模块,这块笔者就不在进行赘述了,以上几点是笔者在进行分析站点过程中最为关注的细节。
第三,网站的跳出率分析。网站跳出率是百度判断网站权重的一个重要细节,对于跳出率的分析也是站长必须细心认真去进行分析的基础细节,跳出率的计算方法是在某个时间段内,用户只浏览了一页即离开网站的访问次数占总访问次数的比例。对于某页面的跳出率算法:从这个页面进入网站没有再点击其他页即离开的次数/所有进入这个页面的次数。这句话可能理解起来有点绕,但是我们只需要明白一点以首页为例子,来了100个客户进入首页,但是50个没有继续打开内页或者其他页面继续访问而是直接退出网站,那这个时候入口网址的跳出率就是 50/100=50%.这个数值越高代表网站优化的质量越差,数值越低代表网站粘度越好,明白问题之后不断改进提升即可。
第四,客户在页面的逗留时间。逗留时间直接影响的是网站粘度,反映到网站上面就是我们的网站内容质量度,用户体验度方面。这个参数一旦数值较低,毫无疑问网站用户体验或者内容质量,或者网站的访问速度这些细节某些方面肯定存在问题,我们找到问题之后就要不断的通过刚才笔者介绍的三个细节来逐步改善网站细节问题,一般停留时间短就是这三个方面出现问题的可能性最大,适当进行调整即可。
第五,明白网站的受访页面。网站优化一定要做到全站平衡,我们不能单单将眼光聚集到网站首页,适当的时候网站内页和目录页也是我们值得关注的重点,作为一个企业网站很多时候我们的产品列表页是用户关注的重点,这个时候我们要进行重点优化,适当部署产品词,配以相关的产品图片,做好基础优化,而针对栏目页和内容页想要留住客户无疑还是要提供与栏目主题或者文章标题相互吻合的文章内容来优化,首先在相关度上一定要进行严格的把关,其次是内容质量度问题这个是笔者一再强调的问题,内容质量不能严格把关比如文不对题,内容错别字,语句错误百出无疑是让用户离开的导火索。明白那些页面是用户喜爱的,那些受访页面有流量但是跳出率高。我们都要进行针对性的处理和适当的调整。
最后,笔者总结一下,企业网站本身流量就比较单一,因为很多企业站优化的产品词竞争本身指数就低,在这种情况下如何牢牢把握每一个流量是我们必须考虑的关键,数据分析就是一、我们最为得力的帮手,是我们找出网站深层问题的利剑,合理的使用这把利器将会大大提升优化效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16