京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何进行网站数据分析-理清网站分析的思路
如何进行网站数据分析?这是之前的分享流量时听众提的另一个问题,在这里把相应的内容整理一下。
下图是一个网站分析的生命周期示意图,在确认好分析需求并收集好我们所需要的数据后(强调一下,明确分析需求很重要,这可以避免为了分析而分析),我们就可以充分使用网站分析工具的各种报告对数据展开分析。
但网站分析工具中的数据量非常大,你可能一不小心就淹没在数据的海洋中,你得有一个明确的分析思路,知道要利用哪些报告或哪些报告视图才能帮助你快速找到问题的答案。以下是网站分析中涉及到的数据模块,这也提供了一个网站数据分析的大概思路。
根据上边的数据模块所涉及的内容,在网站分析报告中我一般会对下边所列出的板块与指标进行具体分析(以下列出的是在网站数据分析中一些我个人觉得比较重要的板块与指标,不同的网站重要的数据指标会有所不同):
基本情况:
网站的流量水平怎么样?与行业同类网站的数据相比,根据我们的市场定位,我们的流量在未来需要有多大的提升?
访客主要来自哪些地方?这用于确认与我们制定的市场策略是否匹配。如果有相当多的用户来自一些小语种的国家,我们是否要考虑建设多语言网站?
访客一般会通过什么样的设备对网站进行访问?在移动化越来越流行的今天,我们是否要建设自己的移动站点或开发我们的APP?
新老用户的比例怎么样?我们在拓展新用户的同时,是否能够留住老用户?
流量来源
网站的主要流量来源有哪些,SEO、SEM、EDM还是社交媒体?还有哪些类型的流量来源我们可以拓展?
这些流量来源的优先顺序是怎么样的,哪些是我们最倚重的流量来源,哪些流量来源的转换率最高?
SEO/SEM的流量水平怎么样,该如何去提升?
EDM、社交媒体的营销方式的使用情况怎么样,转换率如何?
网站内容
网站的页面分类有哪些?
产品页面、目录页面、营销专题页面等各类页面的流量以及转换表现(页面价值)情况怎么样?
网站上最常见的着陆页面有哪些?是否页面上的内容正是我们希望用户浏览到的内容?
用户的访问路径的引导是否存在问题,我们是否把用户引导到了主要的营销专题或产品页面?关于访问路径的分析可参考:可参考如何分析用户的访问转换路径。
用户是否与网站发生了我们期望的互动:参与活动、观看视频、下载、投票、订阅或下单?
产品销售情况
网站的订单转换率与客单价是多少?与行业水平是否有差距?
购物车转换漏斗数据怎么样,用户在哪一步的放弃率比较高,购物车的用户体验是否可以作优化?
哪一类的产品销售情况最好?
用户在购买前一般会访问多少次网站或要考虑多久才会下单?
要注意的是,在分析数据时如果发现有问题(比如购物车的转化率特别低)但又百思不得其解时,可以亲自去体验一下网站的访问流程,看一下在完成一个特定的目标或任务时是否存在障碍,也许你一下子就发现了问题的根源。
案例:
当你需要对网站进行一次全面的分析时,你可以按上边所列的内容对网站的各个数据模块系统地进行分析。但各个营销渠道的网站分析需求多种多样,不同的需求的分析方法也有所不同。而遇到渠道部门提交的一些指标数据异常的分析需求,我们可以灵活地进行处理。
以下是两个简单的案例。
问题1:一个电商网站日均销售为$80万,但某天突然下降为仅有$40万。
分析:
我们可以按照里边的内容一步一步作分析,把销售异常的根源找出来,但如果你对网站的业务运营情况非常熟悉,在这种突发情况下我们可以一针见血地找到问题的根源,从而得以快速修正问题恢复网站的正常销售。
还是按照我们习惯的思路来。我们都习惯了把销售与流量关联起来,当销售出问题时我们就会习惯性地去查看网站的流量情况。流量也下降了吗?关于流量的变化这里有两种可能:
流量也有一个相似幅度的下降=》流量来源出了问题?=》细分流量来源(SEO、CPC、EDM、用户所在区域)作分析=》页面流量分析(商品关注度是否有变化)
流量没有明显的下降è订单转换率出了问题?=》对产品的销售情况作分析,某些产品的转换率下降了还是几乎所有产品的转换率下降了?=》对产品的页面流量进行分析或对购物车转化路径作分析,是否是因为这部分转换率较高的产品的关注度下降了,还是网站的购买引导用户体验变差了,甚至是购物车系统在某一段时间不能访问?
从流量开始层层深入对数据进行分析,直至找到问题的根源为止。另外,在分析指标数据异常的时候,一些额外因素如特殊日子、重大事件、换季也要考虑在内,如“双11”别人者在如火如荼地在大搞促销,而你却没有一起去凑热闹,这段时间的销售有可能会变得较为惨淡。
问题2:EDM合作商给他们的北美地区的用户发送了50万封邮件(邮件链接里加了GA UTM标识),但对网站的销售增长却没有任何促进作用。
分析:
网站分析系统里来自EDM的流量数据有多少=》这部分流量来自哪些地区,真的是北美吗?=》这部分访客的访问路径怎么样,有没法有进入购物车=》最终有没有产生订单
分析结果显示,这期EDM的仅带来了少量流量,而且访客多是香港以及东南亚的,没有带来任何销售,看起来这个合作商并没有践行合约的内容,下次就不要再找他们合作了…
Google Analytics智能警报
另外,在分析网站指标数据异常的时候,建议充分使用好GA的智能警报功能,这个可以大幅减少你的网站的工作量。当数据出现异常的时候,它可以把异常的数据指标给你列出来,并会相应地列出数据异常的原因。
在GA中有两种类型的提醒:自定义提醒和自动提醒。自动提醒是Google Analytics根据其算法生成的提醒。也就是说,每天GA的智能引擎都会检查以下维度(包含但不限于)的指标值,以确认它们是否发生了显著变化:
所有流量
访客类型(新访客与回访者)
城市
地区
国家/地区
广告系列
关键字
来源
媒介
引荐路径
着陆页
退出页
点击率(AdWords)
除了自动提醒,你还可以设立自定义提醒来监控网站运营数据。你可以为任何一个指标设置提醒标准并应用到任何维度,甚至还可以把提醒应用到高级细分的访问群组中。我们可以把网站流量与销售的高峰与低谷设置为警报,这样当网站的主要指标出现异常时这些自定义提醒就可以通过邮件发送功能及时地通知到相关人员。目前只有自定义提醒功能可以使用邮件自动发送功能。
网站分析并没有固定的步骤和方法,当你非常熟悉网站分析工具的使用以及所要分析的网站的业务时,你可以完全不必拘泥于以上的所提到的思路与方法,但网站分析的目的必须要明确:减少成本,提升效益,分析后的优化工作不可缺失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08