
如何用R绘制地图
本文主要包含三种绘制地图的方法:绘制基础地图、基于空间数据格式(shapefile)绘制地图以及如何调用百度地图和谷歌地图的数据来绘制地图。
基础地图
方法
从map()包里获取地图数据,用geom_polygon()(可以用颜色填充)或者geom_path()(不能填充)绘制。
#install.packages(“ggplot2″)
#install.packages(“maps”)
library(ggplot2)
library(maps) # 为了获取数据
##
## # ATTENTION: maps v3.0 has an updated ‘world’ map. #
## # Many country borders and names have changed since 1990. #
## # Type ‘?world’ or ‘news(package=”maps”)’. See README_v3. #
# 美国地图数据
states_map <- map_data(“state”)
head(states_map)
## long lat group order region subregion
## 1 -87.46201 30.38968 1 1 alabama
## 2 -87.48493 30.37249 1 2 alabama
## 3 -87.52503 30.37249 1 3 alabama
## 4 -87.53076 30.33239 1 4 alabama
## 5 -87.57087 30.32665 1 5 alabama
## 6 -87.58806 30.32665 1 6 alabama
# geom_polygon()
ggplot(states_map, aes(x=long,y=lat,group=group)) +
geom_polygon(fill=”white”,colour=”black”) +
labs(title = “USA Map”)
# 中国地图
library(mapdata)
map(“china”, col = “red4″, ylim = c(18,54), panel.first = grid())
title(“China Map”)
# 世界地图数据
world_map <- map_data(“world”)
head(world_map)
## long lat group order region subregion
## 1 -69.89912 12.45200 1 1 Aruba
## 2 -69.89571 12.42300 1 2 Aruba
## 3 -69.94219 12.43853 1 3 Aruba
## 4 -70.00415 12.50049 1 4 Aruba
## 5 -70.06612 12.54697 1 5 Aruba
## 6 -70.05088 12.59707 1 6 Aruba
#sort(unique(world_map$region))
# 绘制指定区域的地图数据
# 绘制欧洲足球五大联赛所在地
euro <- map_data(“world”, region = c(“UK”,”France”, “Spain”,”Germany”, “Italy”))
ggplot(euro, aes(x=long, y = lat, group=group,fill=region)) +
geom_polygon(colour=”black”) +
scale_fill_brewer(palette = “Set2″) +
scale_y_continuous(limits=c(40,60)) +
scale_x_continuous(limits=c(-25,25)) +
labs(title = ” Euorpe’s Big Five Football Leagues”)
绘制等值区域图
当我们创建一个地图后,如果根据变量值对不同区域填充不同的颜色呢?
方法
很简单,只要把变量值和地图数据合并在一起,然后把一个变量映射到fill上就可以了。
head(USArrests) # 1973年的数据
## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7
crimes <- data.frame(state= tolower(rownames(USArrests)), USArrests)
# 合并数据集
crime_map <- merge(states_map,crimes,by.x=”region”,by.y = “state”)
# head(crime_map)
library(plyr) # 加载数据清洗软件包
##
## Attaching package: ‘plyr’
##
## The following object is masked from ‘package:maps':
##
## ozone
# 按照 group, order排序
crime_map <- arrange(crime_map,group,order)
# head(crime_map)
ggplot(crime_map, aes(x=long,y=lat, group = group, fill = Assault)) +
geom_polygon(colour = “black”) +
coord_map(“polyconic”) +
labs(title = “USA Map”)
# 更改配色
ggplot(crimes, aes(map_id = state, fill = Assault)) +
geom_map(map = states_map, colour = “black”) +
scale_fill_gradient(low=”#FFFFFF”, high = “#BB4444″) +
expand_limits(x = states_map$long, y = states_map$lat)
对于犯罪率这个指标,从上图可以看出采用连续取值的方法无法很好地反映出信息,这时采用离散取值反而更容易解释。
# 离散颜色标度
qa <- quantile(crimes$Assault, c(0,0.2,0.4,0.6,0.8,1.0))
qa
## 0% 20% 40% 60% 80% 100%
## 45.0 98.8 135.0 188.8 254.2 337.0
# 新增一个分位数类别变量
crimes$Assault_q <- cut(crimes$Assault, qa, labels = c(“0-20%”, “20-40%”,”40-60%”,
“60-80%”, “80-100%”),
include.lowest = TRUE)
states <- ddply(states_map, .(region),summarise, lat = mean(lat,na.rm = TRUE),
long = mean(long,na.rm = TRUE))
crimes <- merge(crimes, states, by.x = “state”, by.y = “region”)
# 绘制离散分类地图
p <- ggplot(crimes, aes(map_id = state, fill = Assault_q)) +
geom_map(map = states_map, colour = “black”) +
scale_fill_brewer(palette = “Set2″) +
expand_limits(x = states_map$long, y =states_map$lat) +
coord_map(“polyconic”) +
labs(fill=”Assault Rate\nPercentile”, title = “USA Map”)
p
# 加入州名对应的标签
p + geom_text(aes(x=long,y=lat,label=state),size=3,colour=”black”) +
theme_bw() +
xlab(“long”) + ylab(“lat”)
# 如果你想去掉网格线和坐标框,那么接着往下翻!
# 创建空白背景地图
theme_clean <- function(base_size=12){
require(grid)
theme_grey(base_size)
theme(
axis.title = element_blank(),
axis.text = element_blank(),
panel.background = element_blank(),
panel.grid = element_blank(),
axis.ticks.length = unit(0, “cm”),
axis.ticks.margin = unit(0, “cm”),
panel.margin = unit(0, “lines”),
plot.margin = unit(c(0,0,0,0), “lines”),
complete = TRUE
)
}
p + theme_clean()
## Loading required package: grid
ESRI公司的Shapefile文件是描述空间数据的几何和属性特征的矢量数据结构的一种格式。 一个Shapefile文件最少包括三个文件:主文件(.shp):存储地理要素的几何图形的文件; 索引文件(.shx):存储图形要素与属性信息索引的文件; dBASE表文件(*.dbf):存储要素信息属性的dBase表文件。
除此之外还有可选的文件包括:空间参考文件(.prj), 几何体的空间索引文件(.sbn 和 .sbx), 只读的Shapefiles的几何体的空间索引文件(.fbn 和 .fbx), 列表中活动字段的属性索引(.ain 和 .aih), 可读写Shapefile文件的地理编码索引(.ixs), 可读写Shapefile文件的地理编码索引(.mxs), dbf文件的属性索引(.atx), 以XML格式保存元数据(.shp.xml), 用于描述.dbf文件的代码页,指明其使用的字符编码的描述文件(*.cpg)。
需要注意的是,主文件是一个直接存取,变长记录的文件,其中每个记录描述一个实体的数据,我们称之为称为shape。
下面这个网站中可以下载全球各个国家完整的shapefile格式数据: shapefile数据下载网站
备注:慎用中国地图数据!
方法
利用maptools()包中的readShapePoly()载入空间数据文件,用fortify()把数据转化成数据框的格式,然后画图。
library(maptools)
## Loading required package: sp
## Checking rgeos availability: TRUE
setwd(“~/Desktop/dataset/map”)
# 载入空间数据并转化成数据框
china_shp <- readShapePoly(“china/bou2_4p.shp”)
# 返回一个 SpatialPolygonsDataFrame 对象
# str(china_shp)
china_map <- fortify(china_shp)
## Regions defined for each Polygons
# 绘制中国地图
p <- ggplot(china_map, aes(x = long, y = lat, group = group)) +
geom_path() +
labs(title = “China Map”)
# 绘制空白背景的地图
p + theme_clean()
这里我们只利用了shapefile中最基本的边界信息,还没有对地理信息数据进行更进一步的分析。我们还可以将不同格式的地理数据整合起来,例如如何在上面的地图上绘制出我国的铁路、水系分布等内容。
调用百度地图和谷歌地图的数据
接下来,我将介绍如何从百度地图和谷歌地图中获取心仪的地图数据信息。
百度地图
library(devtools)
#install_github(“badbye/baidumap”)
library(baidumap)
# 随便输入几个经纬度坐标
lon = matrix(c(117.93780, 24.55730, 117.93291, 24.57745, 117.23530, 24.64210,
117.05890, 24.74860), byrow=T, ncol=2)
# 将经纬度坐标转换成真实地理信息
location = getLocation(lon, formatted = T)
location
## lon=117.9378;lat=24.5573 lon=117.93291;lat=24.57745
## “福建省厦门市海沧区坂南路” “福建省厦门市海沧区大溪路”
## lon=117.2353;lat=24.6421 lon=117.0589;lat=24.7486
## “福建省漳州市南靖县” “福建省漳州市南靖县X607″
# 获取厦门大学经纬度坐标,返回json格式文件
getCoordinate(‘厦门大学’) # json
## 厦门大学
## “{\”status\”:0,\”result\”:{\”location\”:{\”lng\”:118.10229694322,\”lat\”:24.442898974406},\”precise\”:0,\”confidence\”:30,\”level\”:\”商圈\”}}”
ad <- getCoordinate(‘厦门大学’, formatted = TRUE)
names(ad) <- NULL
# 绘制地图
# 自己修改了一些参数,并将修改后的package挂在github上,所以我选择从github上安装ggmap包。
# install_github(“fibears/ggmap”)
library(ggmap)
p <- getBaiduMap(“厦门市思明区”,zoom = 12)
## Map from URL : http://api.map.baidu.com/staticimage?width=400&height=400¢er=118.13453488213,24.468728076403&zoom=12&scale=2
ggmap(p) +
geom_point(aes(x=ad[1], y =ad[2]))
当当当,奇迹发生了——厦门大学位于海中央!这是因为谷歌地图和百度地图经纬度坐标存在一定的偏差, 而getBaiduMap()软件包的作者利用了ggmap()包中坐标转换的思想,这导致最终绘制出来 的图形不准确。因此,我们还是考虑转入谷歌阵营。
谷歌地图
首先介绍一个概念:火星坐标系统
火星坐标系统是一种国家保密插件,也叫做加密插件或者加偏或者SM模组,其实就是对真实坐标系统进行人为的加偏处理,按照特殊的算法,将真实的坐标加密成虚假的坐标,而这个加偏并不是线性的加偏,所以各地的偏移情况都会有所不同。而加密后的坐标也常被人称为火星坐标系统。
所有的电子地图、导航设备,都需要加入国家保密插件。第一步,地图公司测绘地图,测绘完成后,送到国家测绘局,将真实坐标的电子地图,加密成“火星坐标”,这样的地图才是可以出版和发布的,然后才可以让GPS公司处理。第二步,所有的GPS公司,只要需要汽车导航的,需要用到导航电子地图的,都需要在软件中加入国家保密算法,将COM口读出来的真实的坐标信号,加密转换成国家要求的保密的坐标。这样,GPS导航仪和导航电子地图就可以完全匹配,GPS也就可以正常工作了。
由于谷歌地图被GFW屏蔽了,所以想调用其API需要翻墙。
主要有以下几个步骤:
安装SSLedge
在RStudio中更改proxy
首先,我们先简单认识下http和https:
http是普通超文本协议,其信息室明文传送,而https就是安全超文本传输协议,需要证书和提供安全连接,https是嵌套了SSL加密的http连接,其内容会由SSL先加密,然后再传送。
为了更方便地使用网络,我将只使用https代理,对于Http类型的网站使用直接连接的方式。
# 查看信息
Sys.getenv()
# 两种方式设置proxy
# 利用Sys.setenv()
Sys.setenv(https_proxy=”https://user:password@ip:port”)
# 修改.Renviron 文档
接下来我们来看看如何调用谷歌地图的API来绘图。
# 可以直接在cran中下载package
# install_github(“fibears/ggmap”) # 自己修改了部分链接代码,所以我选择从github下载
# library(ggmap)
setwd(“~/Desktop/dataset/others”)
# 获取坐标及地图数据
ad1 <- as.numeric(geocode(“福建省厦门市思明南路422″,source = “google”))
## Information from URL : https://maps.googleapis.com/maps/api/geocode/json?address=%E7%A6%8F%E5%BB%BA%E7%9C%81%E5%8E%A6%E9%97%A8%E5%B8%82%E6%80%9D%E6%98%8E%E5%8D%97%E8%B7%AF422&sensor=false
xmu <- get_map(“厦门市思明区”,zoom = 13, maptype = “roadmap”)
## Map from URL : https://maps.googleapis.com/maps/api/staticmap?center=%E5%8E%A6%E9%97%A8%E5%B8%82%E6%80%9D%E6%98%8E%E5%8C%BA&zoom=13&size=640×640&scale=2&maptype=roadmap&language=en-EN&sensor=false
## Information from URL : https://maps.googleapis.com/maps/api/geocode/json?address=%E5%8E%A6%E9%97%A8%E5%B8%82%E6%80%9D%E6%98%8E%E5%8C%BA&sensor=false
ggmap(xmu, extent = “normal”) +
geom_point(aes(x=ad1[1], y =ad1[2]))
需要注意的是,利用geocode函数检索经纬度数据时,最好选择使用道路数据,这样可以提高检索的准确率。
最后引用肖凯大神博客中的一个案例:本例是从地震信息网获取最近一周的地震数据,得到其经纬度,然后以散点形式绘制在google地图上,同时也显示地震发生的密度估计。
# 加载扩展包
# install.packages(“animation”)
# install.packages(“XML”)
library(ggmap)
library(animation)
library(XML)
# 从网页上抓取数据,并进行清理
webpage <-‘http://data.earthquake.cn/datashare/globeEarthquake_csn.html’
tables <- readHTMLTable(webpage,stringsAsFactors = FALSE)
raw <- tables[[6]]
data <- raw[-1,c(‘V1′,’V3′,’V4′)]
names(data) <- c(‘date’,’lan’,’lon’)
data$lan <- as.numeric(data$lan)
data$lon <- as.numeric(data$lon)
data$date <- as.Date(data$date, “%Y-%m-%d”)
# 用ggmap包从google读取地图数据,并将之前的数据标注在地图上。
ggmap(get_googlemap(center = ‘china’, zoom=4,maptype=’terrain’),extent=’device’) +
geom_point(data=data,aes(x=lon,y=lan),colour = ‘red’,alpha=0.7) +
stat_density2d(aes(x=lon,y=lan,fill=..level..,alpha=..level..),
size=2,bins=4,data=data,geom=’polygon’)+
theme(legend.position = “none”)
## Map from URL : https://maps.googleapis.com/maps/api/staticmap?center=china&zoom=4&size=640×640&scale=2&maptype=terrain&sensor=false
## Information from URL : https://maps.googleapis.com/maps/api/geocode/json?address=china&sensor=false
## Warning: Removed 47 rows containing non-finite values (stat_density2d).
## Warning: Removed 47 rows containing missing values (geom_point).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14