
非结构化数据分析,让数据带动生产力
近年来“大数据”及“数据分析”的概念火爆异常,然面对大数据分析时,国内外却有着不小的差距,国内企业仍以结构化数据分析为主,而美国的很多企业却早已向非结构化数据迈进。
非结构化数据分析目前属于非常前沿的技术,需求量很大,但是在市场上几乎是一片空白,Derek Wang(汪晓宇博士--美国数据分析科学家、前北卡大学夏洛特分校助理敎授、夏洛特视觉中心主任)与其团队看到这个领域的巨大潜力,并且把握住了机会,悉心研发的Taste新型非结构化数据分析平台,在短短的四五个月的时间里成功拿下了几十家中小企业的合作,一些大厂商同样抛出了橄榄枝,其中包括6家《福布斯》全球500强的公司以及多家美国主流企业。
Taste Analytics这款软件在美国为何如此抢手?如何走进中国市场?就相关问题,我们对美国非结构化数据分析领军企业Taste Analytics创始人Derek Wang(汪晓宇)博士进行了采访。
美国率先实现非结构化数据分析
Derek Wang在介绍Taste Analytics这款产品时说道:“The Taste Signals Platform是一套可用于每一个企业日常经营的实时的智能数据分析平台,其最独特的地方在于强大的非结构化数据的分析能力,目前其不仅可以分析传统的结构化数据,也可以分析包括中文在内的12种文字、语音等非结构化数据。Taste Analytics可以对数据、文字以及语音进行实时分析,结合了舆情分析、语义分析、人机互动三重机制,目前,针对文档类的筛选分析效果明显,在未来的十二个月之内,图像处理包括视频分析的非结构化部分也推动到市场上。这款产品可以可视化分析结果,操作界面也非常简单,母亲辈的人都会使用,在美国这边的客户一般五到十分钟就可以轻松掌握”,在问道Taste Analytics 的应用范围及场景时,Derek Wang 给出了这样的回答:“ Taste Analytics是一个分析平台,最大的市场是中小企业,但是对于一些大企业来说,同样适用, 例如亚马逊,他们的核心业务不是做数据分析,对外提供的产品也并非这方面,然而在美国我们一直保持着合作。对于应用场景而言,Taste Analytics的服务适用于各种非结构化数据分析场景,只要有聊天记录、对话记录和邮件记录,就可以和数据源直接对接,非常易用而且安全。“在谈到数据安全问题时,我们不免有些疑惑,因为之前Derek Wang谈到:“基于云平台,让客户可以了解到进行数据分析”,但是实际上很多客户在应用云时难免会担心数据泄露,影响安全,毕竟都是日常交易或者是核心数据,基于这点,Derek Wang给出了这样的回答:“我们非常重视安全,基于不同企业类型的考虑,会有两套不同的方案,对于大企业来讲,如金融企业或者IT商,我们可以直接部署到企业内部的安全平台上,所有的云平台都将在企业私有云或者是机房内部进行部署,对于中小企业或者个人来说,我们有一套安全加密云,我们所有的服务器跟最高级安全加密模式是匹配的,最大程度化的保证了用户数据不被泄露。”那么对于数据的准确性是如何判断的?类似于恶意评价的筛选如何做到呢?“我们系统里面自带智能算法,可以剥离出哪些言论来自机器,哪些言论是垃圾,通过筛选让核心的语意内容展示出来,智能屏蔽掉恶意或者说是垃圾信息”。Derek Wang这样答道。
国内市场有望填补非结构化数据分析空白
目前,国内的企业在进行大数据分析时,仍以分析结构化数据为主,而对于内涵丰富的非结构化数据,市面上并没有有效的工具进行分析。考虑到中国市场和美国市场不太一样,这款产品如何本土化走进生活,进入中国市场后的合作伙伴如何选择?”我跟国内的合作模式有三种,渠道、分销和整合,我们在进入中国市场时,不会以我们为本土方向,而是会选择与国内一些比较知名的大数据公司进行合作,把产品结合到他们已有的大数据产品平台中,把数据分析的实用性带给中国广大企业级的客户应用,让客户从中受益,同时,我们也会给中国企业提供非常本地化的服务。从大家最关心的安全角度讲,如果是企业内部的私有数据,我们可以把平台放到企业防火墙内或者内部云里;如果是外部数据,我们的爬虫会自动抓取这些数据,”Derek Wang博士说,“我们一直希望的就是,让企业用最小的付出,得到最好的结果。”
写在最后:Taste Analytics的愿景是“用数据带动生产力”以及“将每个人都变为数据科学家”。其在美国的成功创建,与美国整体市场环境有着很大关系,包括欧洲市场,目前来讲对B2B的软件平台模式都比较信赖,在相对完整的行业体系下,市场活跃度以及成熟度也比较高,那么对于目前的中国市场而言,要想成功介入,势必还要做很多功课,在如何本土化改良以及合作伙伴的选择上,还需考虑周全,Derek Wang预计此产品在明年年初有望进入中国市场,目前还在进行市场调研以及产品本土化的准备工作,究竟效果如何,能否帮助中国企业走出数据分析的困境?让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29