京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产生大结果:保险赔付率预测模型效能提升高达30%
1月8日,2016中国(杭州)“互联网+”金融大会,来自律商联讯风险信息公司(LexisNexis Risk Solutions)的保险业务首席执行官 Bill Madison进行了“大数据在保险行业的应用和探索”的精彩演讲。Bill指出,若想在当今的大数据时代充分挖掘数据价值,我们必须首先明确自身的战略诉求,再借助海量数据资源、大数据技术、关联和分析能力、以及行业专长满足个性化的诉求。
公共记录引入保险市场 赔付率预测模型效能提升高达30%
近年来,核心的银行征信数据已经发生了变化,除了消费者行为的改变和数据明细程度的提升,还产生了一些全新的数据字段,为消费者风险评估带来了许多有价值的新洞见。面对不断演变的数据来源,律商联讯长期致力于扩展消费者风险分析维度,从全球超过1万3千多个数据源采集了500亿条消费者和企业记录,为保险和金融服务等行业积累了海量的数据资源,其中包括:历来的居住地址和住址稳定性,电话和水电煤气记录,职业证书,教育历史,破产、抵押、判决和驱逐等数据。
除了丰富的公共记录和第三方数据资源以外,律商联讯通过建立保险行业共享型数据平台,为行业引入了一个全新的数据成分,完善了为以保险为中心的消费者金融视图。
律商联讯将这些非传统数据引入保险市场,生成独特的变量和行业风险评分,与传统征信数据一起用于风险定价和承保决策,帮助保险行业利用数据优化工作流程,更好地评估风险,从而提升从展业到理赔、覆盖客户完整保险生命周期的各个环节的工作效率。
如下图所示,掌握的数据越多,保险赔付风险模型的预测能力就越强。每增加一个数据集,我们都能看到模型的预测准确度获得显著提升——改良后的信用记录,加上公共记录,再加上保险赔付历史,可以在传统信用记录的基础之上带来30%的模型效能提升。
如何使大数据应用切实可行
律商联讯的大数据战略远远超过了数据或数据技术本身,40年的行业积累使得律商联讯能够在吃透行业的基础上进行数据关联和分析,并利用行业专长提供以客户为中心的解决方案。
律商联讯总结多个国际市场运营经验后发现:保险公司拥有一套自己的工作流程,从初期的保险展业开始,直至为客户提供理赔服务。在这个保险生命周期中,保险公司每次与消费者接触的节点,都是一次获取知识的节点,有机会更进一步地了解消费者。律商联讯希望在每一个工作节点,都可以为保险公司提供与消费者个人相关的信息和洞见,帮助保险公司更好地理解风险。为了实现这一目标,律商联讯在美国及多个海外市场建立了与保险公司之间的单一数据管道,将数据和分析产品在每一个相关工作节点推送给保险公司,充分满足其各个节点的风险信息需求。
Bill最后总结到,数据问题其实很简单:数据越大越好。更多的数据和更好的关联能够为我们带来更加丰富的个体档案,以及更加完整、准确的个体间关系。借助足够多的数据,我们就能够掌握每一个客户的切实可行的个性化洞见,为每一个客户定制完全贴合其需求的产品和服务。只有这样,大数据才能真正凸显其价值所在。
律商联讯风险信息公司(简称:律商联讯)是一家全球领先的风险信息服务提供商,向保险、医疗健康、法律、金融服务等行业及政府机构提供风险预测、评估及管理服务。律商联讯是励讯集团(RELX Group,原名励德爱思唯尔集团Reed Elsevier)的全资子公司。励讯集团是世界最大的专业信息解决方案提供商之一,在科技、医学、风险、法律和商业信息等领域为120多个国家的客户服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13