
做好数据分析 制定聪明决策
数据分析可以找出到底哪一半投资是浪费掉的,让您可以最大化顶线(即增加营收)或最小化底线(即降低成本),从而优化您的投入产出比。数据分析可以帮助制定聪明的决策——它是把数据转化为信息的过程,分析信息以得到见解,并制定可以影响商业绩效的策略和行动计划。
过去,我们常抱怨没有足够的数据——搜集数据和信息用作分析是非常困难的,需要大量的时间和金钱等成本;现在,跟踪和搜集信息已经变得非常容易了,而且所需成本也大大减少。然而,我们仍然在像一个世纪前一样努力解决哪一半广告费被浪费掉的问题——因为可用作分析的数据和信息实在是太多了。
我们需要换个角度来思考数据分析。首先,数据不再是一个障碍;其次,我们应该关注整个流程和商业成果。不过,谈到数据分析时,目前仍然有很多误解。简单地聘用数据分析负责人或购买顶级的数据分析软件,并不代表您的公司已经拥有数据分析的能力。因此,首先理解数据分析的基本知识,是非常重要的。
基本知识
数据分析并不是IT,也不是报告。对这一点的误解,是我见到过的最常见的误解之一。
当谈到数据分析时,很多人仍然相信这应该是IT的事情,因为它与技术有关。数据分析的第一步是把数据转化为信息,在这里,技术只是工具,报告只是产出。我们需要技术来进行数据分析,但这并不意味着数据分析就应该由IT的人来驱动。与此类似,财务管理也需要软件来生成财务报告,但是它并没有被划归到IT,因为它涉及到财务审核和规划。此外,很多人仍然不清楚数据分析和报告的概念之间的区别。在我看来,如果报告中没有任何信息被翻译为可以影响商业产出的见解,那么这就不是数据分析,仅仅是报告而已。
见解是很重要的,很多公司抱怨说报告没有见解。首先,我认为不应该期望从报告中得到见解,因为报告仅仅是提供一些数字来告诉您发生了什么;同时,您仍然需要找出为什么以及需要做什么。
找出见解是一个探索和学习的过程。它必须由彻底理解业务的人来发起,问正确的问题,分析相关信息之间的联系,找出能引向可能行动的见解。找出见解的过程不能外包给对您的业务并不太懂的第三方。
数据分析也是一个人和数据之间交互和协作的过程;因此,技术在这里对改善业务工作效率而言扮演者重要的角色。报告仅仅提供静态的信息,但我们需要快速而动态地获取来自多个数据源的相关数据来回答突发的商业问题并找出见解。没有技术,从无数静态报告中获取见解将会占用大量时间,非常困难。
最后一个我想要说明的要点是关于制定聪明决策的过程。
我知道很多公司都把处理数据分析的职责交给内部人员或外包给第三方的服务提供商。然而,这些内部人员或服务提供商并没有权威、影响力或权力去参与战略和决策制定。
结果,数据分析带来的增值并不能转化为能够带来想要的商业成果的行动。
在数据分析、战略制定和决策制定的流程之间,需要有很好的整合和协作。竖井式组织架构和孤立的决策制定流程往往是实现数据分析的价值的重大障碍。
结论
很显然,这些年来信息技术的迅速发展,影响了我们商业流程、战略制定和数据分析的方式。随着社交媒体 / Web 2.0成为主流,以及开放数据运动,网络上可用数据的数量正在呈指数级增长,也为数据分析带来了很多新的挑战。
无论这些挑战如何,我们都应该始终关注数据分析的基本概念。正如我们总是在任何业务中考虑人员、流程和技术,数据分析中也应如此。我们应该理解技术只是工具——它让人们能够获取正确的数据和信息以找到相关的见解,而这些见解会在决策制定流程中被翻译为战略。
因此,数据分析的关键是制定聪明的决策,并记住基本原则是不变的——万变不离其宗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10