京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师是怎样的一种人生?
直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。
家人:“数据分析?分析什么东西?”
我:“哪里有数据,哪里就有我们,什么都可以分析。”
家人:“是软件工程师吗?会编程吗?”
我:“...不是,不太会。”
家人:“那是管理层吗?”
我:“还...还不到级别。”
家人:“那是商务人员?做市场或销售。”
我:“...也不是,不过我们辅助他们作决策。”
家人:“决策不都是老板说了算吗?你们到底做什么?”
我:“......来,我去给您加点水。”
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告......每个人的理解都不一样。
“小陈,你能给我发一个去年一年的xx页面的访问量吗?最好是以国家,行业,公司规模作为纬度的,浏览量和UV都要。”在数据分析师眼中,这样的场景早已司空见惯。
由于我们对SQL等数据工具轻车熟路,很多部门就会直接找我们要数据,但并不会说清楚前因后果。这样不仅浪费分析师时间,也并不能解决业务人员的需求。
数据分析,被很多部门漏看了“分析”二字。
数据分析师的正确姿势应该是什么样?
互联网公司的优势在于,运营过程中产生大量数据,这些数据可以通过一些手段转化为决策的动力。
数据分析师,就是这其中的结合点。
产品,营销,销售等部门,都会有不同的需求。
例如,产品经理最关心的,是AB测试的数据,用以决定产品的效果;
营销团队,在乎营销渠道反馈与结果的数据,以便设计下一个营销战略;
销售,关心客户的购买率,保留,以及追加销售时机等。
数据可以直接为其提供服务。
而很多数据分析师现在正在做什么呢?
以写SQL做图表为生,把数据整理的干干净净整整齐齐。
但这仅仅是第一步,很多时候,商务部门人员无法直接理解表格数据。
那么数据分析师,还需要把数据通过浅显易懂的图表形式展现出来,无论是饼状图,曲线图,柱状图等等。
但这样的需求可大可小,随时都有可能产生,十分耗费精力和时间。
如果可以自动化出数据,制作走势图,就可以大大的减轻分析师的负担。
在我有限的工作经验里,数据分析团队往往是工作非常辛苦的团队,原因主要有两个。
一、数据分析人员多半是一对多的关系,一名分析人员同时需要支持很多业务团队,每个业务人员都有不同的截止日期,重要程度,这些工作都堆在分析师面前,通常需要加班完成;
二、分析人员属于幕后人员,而且没有开发的码农们那么受重视,也没有得到上级在人员或精神上的支持,于是多半是苦逼的熬着。
我们应该怎么改变这种屌丝生活呢?
首先可以对自己工作进行优先排序,并与对口业务人员沟通,减少或避免复制粘贴的工作。或是进行培训,将如何做复制粘贴的工作方法教给业务人员,所谓授人以鱼不如授人以渔。
不过这些仍然只能治标不能治本。
最直接的方式就是善于利用外部软件服务,避免脏活累活都自己干。
很多现有的服务公司,都可以为帮助客户直接产生漂亮干净的数据,进行无埋点采集。要什么有什么的数据,大大减轻分析师数据处理的时间。
我和我的同事们也是在坑里摸索多年,生成了这样一种产品。运用无埋点采集, 让数据分析师能够专注于分析结果驱动业务,而不是作各种数据清洗和埋点采集或者数据质量QA。
让工程师解放出来,让产品经理可以任性起来,随意增加维度和指标。将更多时间投入在分析数据上。
最后,我个人的经验,在数据分析师的工作中,有三点十分重要。
第一,要勇于展示自己的工作。由于是幕后,我们更要学会自我销售、自我推广,让公司内部人员了解我们的工作进度和成果,得到认可;
第二,深入业务,详细了解商务内容。只有这样,在与业务人员沟通中,才可以得心应手,知道自己努力的方向;
第三,创新,创新,再创新。无论是建立数据挖掘模型,还是规模化数据平台,数据分析人员不仅要精通自己的工作内容,还要不断思考寻求简化现有流程方式,提供新颖实用,并且切合业务需求的产品。
只有这样,我们才有出头之日。
我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08