京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏数据分析中的几个误区 别看指标看事实
在游戏行业中,越来越多的关于数据分析的内容和观点也井喷式提出,“数据驱动下的精细化运营”,“玩家群体的定量研究”,“移动游戏数据分析体系”等等概念的提出,可以看出游戏的研发和运营过程中,对数据分析的需求是无穷无尽的,相应的,对数据分析的讨论也是各抒己见。而盲目过度依赖数据,或者主观的解读数据,带来的损失则是无法估计的。以下,我将结合自己的工作经历,阐述以下数据指标会骗人和游戏数据分析中的几个误区。
1.未理解数据定义,盲目比较数据
近来,同行们乐于去关注关于行业各类型游戏的benchmark,诸如S级游戏的次日留存,S级游戏的ARPU,S级游戏的ACU/PCU等等一些运营常见指标,在我看来,比较是数据的价值之一,是用来衡量产品优劣差距度量最直接的方法,而数据比较是建立相同的数据采集方法和数据指标计算方法上的。所以在比较数据前,请先明白benchmark的计算标准及数据采集方法,这样才能体现数据比较的意义。
2.过度依赖分析方法,沉迷于数据建模过程
作者在大学期间,读的便是统计学专业,大学参加过数学建模比赛拿到较好的名次,也做过一系列诸如BP神经网络,贝叶斯决策树或是聚类分析等项目,在刚接触游戏数据分析时,十分兴奋,便用了各式各样的方法对数据进行分析。渐渐的我发现,在实际工作中,数据分析并不像学术研究那样严谨,更需要对数据表现作出快速判断,不需要在每次分析前都去验证样本群体是否符合某种统计分布,也可能不需要用“人工神经网络”等“高科技手段”去预测产品将来的用户数,甚至给出“A>B”的结论时也用不着做“显著性检验”,考验得更多的是对业务的理解的把握能力。所以在开展数据分析工作过程中,切勿过度依赖分析方法,而应重视游戏业务的把握。
3.数据是客观存在的,切勿主观误读数据
对于在一线工作过一段时间的同行来说,做数据分析经常会走入这样一个怪圈,在我们提取数据的过程中,我们会看到部分的数据表现,而且对各种各样的现象都有了一些自身理解的结论,在这样的思想指导下,总有方法去用数据去验证自己的结论。在我看来,数据是客观存在的,解读数据也需要秉持客观中立的态度,千万需要避免为了自身观点去解读一份数据。
4.不明确数据分析目的,模糊分析需求,分析不完整,应该做一份300%的分析报告
明确分析的目的及需求,比如不要将核心用户研究误认为活跃用户分析。产品经理跟你提出做一份COC的活动数据分析报告,去衡量活动效果,一般情况下,你会将活动前期,中期,后期的游戏宏观数据拿出来,然后画图看各个阶段的表现,然后做出判断。然后欢欣雀跃的拿着报告交给产品经理,这样就觉得了事了。如果从一个数据分析师的角度看来,这样的报告是很廉价的。别人提分析需求时,可能他有10个问题,但是只给我们描述了3个问题,我们并不能简单解决这样3个问题,我们应该更多的是中立客观的从多个角度去思考这样一个问题,然后从产品自身,产品玩家,产品运营等等多个角度,全面的去衡量这样一个问题,去发现潜在机会,然后做出一份300%的分析报告,而不是100%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08