京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏数据分析中的几个误区 别看指标看事实
在游戏行业中,越来越多的关于数据分析的内容和观点也井喷式提出,“数据驱动下的精细化运营”,“玩家群体的定量研究”,“移动游戏数据分析体系”等等概念的提出,可以看出游戏的研发和运营过程中,对数据分析的需求是无穷无尽的,相应的,对数据分析的讨论也是各抒己见。而盲目过度依赖数据,或者主观的解读数据,带来的损失则是无法估计的。以下,我将结合自己的工作经历,阐述以下数据指标会骗人和游戏数据分析中的几个误区。
1.未理解数据定义,盲目比较数据
近来,同行们乐于去关注关于行业各类型游戏的benchmark,诸如S级游戏的次日留存,S级游戏的ARPU,S级游戏的ACU/PCU等等一些运营常见指标,在我看来,比较是数据的价值之一,是用来衡量产品优劣差距度量最直接的方法,而数据比较是建立相同的数据采集方法和数据指标计算方法上的。所以在比较数据前,请先明白benchmark的计算标准及数据采集方法,这样才能体现数据比较的意义。
2.过度依赖分析方法,沉迷于数据建模过程
作者在大学期间,读的便是统计学专业,大学参加过数学建模比赛拿到较好的名次,也做过一系列诸如BP神经网络,贝叶斯决策树或是聚类分析等项目,在刚接触游戏数据分析时,十分兴奋,便用了各式各样的方法对数据进行分析。渐渐的我发现,在实际工作中,数据分析并不像学术研究那样严谨,更需要对数据表现作出快速判断,不需要在每次分析前都去验证样本群体是否符合某种统计分布,也可能不需要用“人工神经网络”等“高科技手段”去预测产品将来的用户数,甚至给出“A>B”的结论时也用不着做“显著性检验”,考验得更多的是对业务的理解的把握能力。所以在开展数据分析工作过程中,切勿过度依赖分析方法,而应重视游戏业务的把握。
3.数据是客观存在的,切勿主观误读数据
对于在一线工作过一段时间的同行来说,做数据分析经常会走入这样一个怪圈,在我们提取数据的过程中,我们会看到部分的数据表现,而且对各种各样的现象都有了一些自身理解的结论,在这样的思想指导下,总有方法去用数据去验证自己的结论。在我看来,数据是客观存在的,解读数据也需要秉持客观中立的态度,千万需要避免为了自身观点去解读一份数据。
4.不明确数据分析目的,模糊分析需求,分析不完整,应该做一份300%的分析报告
明确分析的目的及需求,比如不要将核心用户研究误认为活跃用户分析。产品经理跟你提出做一份COC的活动数据分析报告,去衡量活动效果,一般情况下,你会将活动前期,中期,后期的游戏宏观数据拿出来,然后画图看各个阶段的表现,然后做出判断。然后欢欣雀跃的拿着报告交给产品经理,这样就觉得了事了。如果从一个数据分析师的角度看来,这样的报告是很廉价的。别人提分析需求时,可能他有10个问题,但是只给我们描述了3个问题,我们并不能简单解决这样3个问题,我们应该更多的是中立客观的从多个角度去思考这样一个问题,然后从产品自身,产品玩家,产品运营等等多个角度,全面的去衡量这样一个问题,去发现潜在机会,然后做出一份300%的分析报告,而不是100%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31