京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解铃还须系铃人:大数据时代的安全交给大数据
经过近几年的发展大数据已经不再是一个被炒作的概念。金融、物流、能源等行业对大数据的拥抱愈发紧密。不过随着大数据的普及,各种组织机构的网络安全,也受到了前所未有的威胁挑战,信息泄露逐渐成为重灾区。
瀚思安信联合创始人董昕告诉记者:“传统的安全防御手段逐渐失效,基于黑白名单的手段除了跟不上安全威胁的变化外,还会产生误报现象;基于签名、规则、认证的模型都已经失效。”
无独有偶,随着企业移动化和云时代的到来,IT部门的控制力度也在不断减弱。
以单机杀毒为代表的安全网络1.0时代、病毒网络化、恶意木马、网络攻防为代表的网络安全2.0时代都已经过去;以防止高APT攻击、欺诈和云安全的3.0时代正在来到。
据Gartner报告称,到2016年,全球超过25%的公司将为安全或欺诈检测而部署大数据分析。通过部署只能驱动模型,大数据将成为未来改变企业的主要元素之一。
大数据抵御APT攻击
据了解,一家金融企业每天会产生500T的数据。在海量的数据中,如何挖掘企业的安全隐患,做出预警,成为企业的当务之急。瀚思安信联合创始人高瀚昭认为在这种情况下,要做到两点,第一是做可视化的展现,第二是进行Deep learning。
当然,如果停留在发现问题的层面是远远不够的,将安全隐患扼杀在摇篮之中远比亡羊补牢更有效。传统方式需要对数据库进行清洗,把符合要求或者系统可以识别的数据进行存储,其他的数据就会被清洗掉,然而这也让价值的数据也难以保存。
潜藏在企业中的安全问题已经转变为大数据的分析问题。因此通过大数据分析可以让企业更快速地访问自己的数据,从而使企业能够快速整合和关联内外部信息,以更清晰的视角应对各类威胁。
墙内的数据安全
在云时代之前,大部分的企业安全还处在杀毒软件和防火墙的时代。他们认为购买杀毒软件或者建起一座高墙就是安全的。事实上防火墙好比是防盗门,虽然企业装了防盗门,抵御了外部的ATP攻击时,殊不知一场特洛伊木马式的破坏已经从内部悄然打响。
数据的价值不言而喻,相比于黑客的外部攻击,企业内部人员在利益驱动下的监守自盗行为已经屡见不鲜。然而随着企业移动化的普及,内部员工访问系统的 时间更加碎片化,这意味着数据丢失的风险增大。大数据需要收集不同来源、不同格式的信息,因此就需要创建单 一系统 以收集、检索、规范、分析和共享所有的信息。机构还应该寻找概要文件账户、用户或其他实体,并跟踪这些概要文件的异常操作。
瀚思(HanSight)创始人兼首席执行官高瀚昭说:“瀚思可以识别企业内部哪些是敏感数据,哪些是异常访问,以及访问的数据类型。”
小结:
大数据时代除了低着头挥舞着锄头不断深耕数据带来的价值的尖叫声之外,企业安全的新威胁也如同利剑之于头顶。俗话说解铃还须系铃人,大数据带来的安全威胁,应该用大数据的办法来解决
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31