京公网安备 11010802034615号
经营许可证编号:京B2-20210330
发现假数据科学家的20个问题
现在,数据科学家是21世纪最性感的职业,每个人都希望分一块蛋糕。
这表示会有一些装腔作势的数据人士。这些人称自己为数据科学家,但他们并不掌握对应的技能。
这个问题的出现不一定是因为欺骗的目的。数据科学是全新的,且缺乏具有广泛共识的职位描述,意味着很多人只因为处理数据就认为自己是数据科学家。
“假的数据科学家往往是某个特定学科的专家,并且坚持他们的学科是唯一真正的数据科学。这种信念没有抓住数据科学的要点,数据科学涉及到应用全部科学工具和技术(数学、计算机、可视化、分析、统计、实验、问题定义、模型构建和验证等等)以得到来自数据的发现、洞察和价值。”
——Kirk Borne,Booz Allen Hamilton的首席数据科学家和RocketDataScience.org的创始人
第一种发现假数据科学家的方法是了解你应该寻找的技能。知道数据科学家、数据分析师和数据工程师之间的不同之处很重要,尤其是如果你打算雇佣这些不常见的人时。
为了帮助对数据科学家由真到假(或者被误导的)排序,我们提出了一个20道题的列表,你可以在面试数据科学家时问问他们。
解释什么是正则化,以及它为什么有用。
你最欣赏哪些数据科学家?哪些相关的创业公司?
如何验证一个用多元回归生成的对定量结果变量的预测模型。
解释准确率和召回率。它们和ROC曲线有什么关系?
如何证明你对一个算法的改进确实比什么都不做更好?
什么是根本原因分析?
你是否熟悉价格优化、价格弹性、库存管理、竞争情报?举例说明。
什么是统计检定力?
解释什么是重抽样方法和它们为什么有用。并说明它们的局限。
有太多假阳性或太多假阴性哪个相比之下更好?说明原因。
什么是选择偏倚,为什么它很重要以及如何避免它。
举例说明如何使用实验设计回答有关用户行为的问题。
“长”数据和“宽”数据有什么不同之处?
你用什么方法确定一篇文章(比如报纸上的)中公布的统计数字是错误的或者是为了支持作者观点,而不是关于某主题正确全面的事实信息?
解释Edward Tufte“图表垃圾”的概念。
你会如何筛查异常值?如果发现它会怎样处理?
如何使用极值理论、蒙特卡洛模拟或其他数学统计(或别的什么)正确估计非常罕见事件的可能性?
推荐引擎是什么?它如何工作?
解释什么是假阳性和假阴性。为什么区分它们非常重要?
你使用什么工具进行可视化?你对Tableau/R/SAS(用来作图)有何看法?如何有效地在一幅图表(或一个视频)中表示五个维度?
“一名‘真正的’数据科学家了解如何应用数学和统计,如何使用合理的实验设计构建和验证模型。掌握IT技能但没有统计技能只会让你成为一个造手术刀的外科医生那样的数据科学家”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27