京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力证券业预判未来
上海,我国最具特色的金融中心,其证券市场交易额等单项指标已位列全球前三,有极丰富的金融数据资源;贵州,中国大数据领域的先行者,是国内推动大数据产业发展的重要支撑,已率先启动了全国首个大数据综合试验区建设。
“贵州已经建好了大量数据中心,而上海金融业有大量数据需要储存和重新梳理,两个充满激情和创造力的区域,在大数据和金融领域开展的合作,必将迸发出巨大的商业价值。”信达证券股份有限公司上海分公司副总经理许捷认为,当下,利用大数据发展金融服务和金融创新已经成为一种趋势,作为金融“三杰”的证券业,更渴望大数据助力其预判未来。
尴尬:互联网金融 强势冲击传统金融业
回顾刚刚过去“双12”,支付宝推出首个全球狂欢节,吸引了包括日本、韩国、泰国、新加坡、德国、法国、澳大利亚以及我国港澳台等12个国家和地区的3万家商户参与,涵盖夜市、免税店、百货公司、餐馆、酒吧等多种消费场所。一部手机,行遍天下。互联网金融带给传统金融业的冲击,从线上到了线下。
“互联网带来的便利改变了金融客户的行为习惯,使交易信息透明化,交易成本显著降低。而作为金融业的‘老大哥’,传统银行正从传统业务方式向网络、移动业务转变。”许捷感慨,互联网金融发展的如火如荼,其对传统金融来说,的确带来了巨大的冲击和挑战。证券商亦是如此。
“目前,全行业已经不能再考虑挑战了,而要考虑谁能抓住机遇。”许捷认为,挑战已经清清楚楚很现实的摆在那里,无论你想不想,都需要面对。主动面对才有可能抓住机遇,无论是大券商还是中小型券商,这些都是必须面对和考虑的。这同时也是整个券商行业和金融所需要考虑的。深思熟虑的思考和行动来面对机遇,必然能够带来好的结果。
当然,我们要有一种积极的拥抱的心态才能适应挑战,而不是防范。只有主观上认为是机会,才能考虑投入和合作,才会费尽心思地去想如何抓住机会,如何最大化自己的优势和实现自己的目标,才会有行动和反馈。如果主观上认为威胁,那只会被动的考虑防御,考虑怎么才能避免事情的发生,怎么才能回避或减少。但事实是互联网浪潮已经全面来临,券商已经没有办法回避。所以,我们必须积极地拥抱互联网,融合互联网。
突围:深度数据挖掘 大势所趋
欣然对面互联网金融时代的来临,对于金融业而言,最重要的一步就是利用数据进行“二次掘金”。
“未来,将是大数据引领智慧科技的时代,这也给国内证券公司带来了诸多启示。”许捷表示,大数据时代,券商们开始意会到数据挖掘的迫切性、必要性,券商对于大数据的研究与应用正在紧锣密鼓地进行中。
首先,从技术发展的大环境来看,随着虚拟化技术的深入,数据挖掘技术的不断创新,互联网的发展,为企业大数据挖掘提供了良好的外部环境和技术支持。
其次,从证券业自身发展需求来看,证券业面临行业监管及同业竞争的压力,资产管理、IB以及融资融券等各类新业务的相继推出,对系统及数据管理提出了更高要求。具体表示在:技术层面上,2000年后券商陆续完成了交易大集中,并按需推进建设了业务及管理系统,不断跟进客户的互联网应用需求;业务创新层面上,券商在零售业务、私人业务以及机构业务上的不断创新,一方面产生了大量的业务数据,另一方面对数据挖掘、分析提出了更高要求。大数据时代,对于数据和管理不仅仅停留在某一阶段,而是全周期性管理。
对于大数据的特点,大数据首先是数据量大,其次,海量数据的危机并不单纯是数据量的爆炸性增长,它还牵涉到数据类型的改变。再次,大数据带来的挑战还在于它的实时处理。
对于大数据的作用,大数据时代不一定是对已有客户的价值挖掘,而是要求我们更多从外部价值,对未来做出预测。
展望:大数据助力 证券业预判未来
在互联网金融+大数据时代下,信达证券作了许多尝试。首先,其是第一家推出即时行情网页交易的券商,采用业内领先的W EB版网上交易系统,一改传统交易模式,用户无须下载和安装交易软件,直接登陆信达证券网站即可安全、快速、方便地浏览行情和买卖股票。其次,就在上个月,信达证券发布了大数据告诉你A股的十个秘密规律。
“在我们看来,大数据能够更好的助力证券业预判未来。由此,我们非常看重与贵州的合作。”在许捷看来,贵州发展大数据占据天时地利人和。比如说,随着数据大增长,储存成本将成为金融机构的痛点。一般的企业每年的数据储存量都要增加1倍以上,如何控制储存成本也是一大难题。而为了保障安全,数据中心的地质条件也很重要。
“贵州已经建好了大量数据中心,且当地因海拔相对较高,冬无严寒,夏无酷暑、生态环境好,数据中心散热可以直接换新风。同等条件下,数据中心可以比南方其他地区节约10-30%的用电量,一个标准机架每年可以节电3万度左右。”许捷表示,这些他们都非常看重,因此,下一步打算将数据灾备中心建立在贵州。同时,也将在金融、证券等领域,与贵州加强合作。相信贵州大数据和上海金融,未来发展将前景无限。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27