
大数据:核心问题是“人”不是“技术”
“要解决数字孤岛,现在的核心问题不是技术问题,而是管理问题,法律问题。”上海超级计算中心副主任李根国博士对中国青年报记者说。
“你注意到没有,每个人的手机都变成采集器了。”这位数学专家很清楚阿里巴巴等商业公司的大数据发展异常红火。手机拥有者刚显示出对某个商品表示兴趣,30秒钟之内精确的广告就会投放过来。
李根国所在的超级计算中心一直为高精尖的科研项目提供模拟和运算的平台。2014年,上海大数据中心将在超级计算中心挂牌。李根国介绍说,政府主导的大数据将会有广泛的用途。除了人口管理外,还有空间管理,绘制城市地图,建立导航系统。上海市成立了一个和航天局合作的北斗应用有限公司,注册资金两个亿,推动北斗应用落地。在相应的信息系统里,有了传感信息后,救护车、公交车走到哪里了,管理者看得清清楚楚。此外,用大数据搜集经济运行的数据也改变着传统的政府统计。从抽样调查抽取几个样本到大数据的全样本,管理系更强,更准确。
像上淘宝一样挂号看病
何萍所在的上海申康医院发展中心,就是大数据用于公共服务的典型范例。
“我们的医疗预约平台每天产生的数据是P级。”申康医疗事业部的高级工程师、医联中心主任何萍说。1P相当于20万部5G大小的高清电影。
据何萍观察,老百姓通常是一大早看病,但往往是早上出门,真正看上病已是下午,挂号排队太慢了。有时没看上,一天就要跑几家医院。而现在,挂号可以仅需一部手机。
何萍所在的申康团队指导开发的上海三级医院预约平台上有上海所有区县的38家医院的专家信息,精确到哪个科、哪天排班都清楚可查。市民可以直接预约感兴趣的专家,预约精确到一个小时,不用过分排队。每次挂号信息的变动就会进入HIS(医院信息系统)信息里,预约成功短信知会。医保卡一刷实时互通。
市民在联网的任何一家医院看病,医生都可以在数据库中调出住院小结和处方等患者信息,医院之间并无壁垒,信息联通包括影像互认。比如病人在某家医院做过CT, 在另一家医院看病时,片子和报告会详细地显示出来。如果医生判断病情并无特别需要再做检查,比如CT显示在一个月内,他可以直接以这份非本医院的报告作为诊断依据,免去病人再受辐射之苦。
“医疗专家是紧缺资源。有时候老百姓只认大牌的专家,其他的都不知道。这就是医疗信息不对称造成的,也是通过平台可以改善的。”何萍说。他们参考淘宝的做法,为预约的市民推荐“你同样喜欢”。在有号的情况下,市民可以同步选择同类医疗专家。看完病还可以打星和评价。比方病人都想看血液专家吴孟超,但他90多岁的人了,一周就来一次,何萍他们就会推荐吴孟超的学生和师弟师妹,也都是很好的专家,患者满意,医院也实现了分流。
最大的突破还是在管理机制上
李根国认为,政府主导的大数据服务将更侧重对社会管理提供公共服务。在他看来,大数据未来发展面临的壁垒,更多来自于技术之外。他发现,一个人的基础人口数据有五十几个字段,包含年龄、性别、社保,户籍等信息。各主管单位各自掌握,往往并不共享,一个人的信息在一处更改后,在另一处不能同步更改,就会造成很多麻烦。而基层街道、区县需要弄清楚自己小区内的户籍人口,流动人口以进行管理,但却无法从掌握数据的上级部门获得相关数据。
在医疗系统工作多年的何萍觉得,最大的突破还是在管理机制上。
医疗领域多年来有着固有的思维,医院各有所属互不相认,这曾经是“搬不动的大山”。上海市基于电子信息档案的卫生系统工程,是国内首例采用美国HIS标准来运行的信息平台。这个项目在2006年启动,2008年23家市级医院联通起来,2010年卫生部和总后勤部所属的10家医院也加入进来,紧接着连接着的是4家郊区医院和属于宋庆龄基金会的医院,形成了现在38家的规模。
从社区医院一层层打通到一二三级医院,数据不能有断档。打破信息的壁垒,也对医院的管理规范提出了更高的要求。排班涉及科室、病房、门诊、查房,合理协调好以后需要提前一个月上传平台。预约精确到一个小时,牵一发动全身。一旦要变更,要把短消息及时推送出去。
“大数据在带来我们产业发展的时候,怎么防止不法分子利用?系统安全是第一位的。包括运行的物理安全,和信息安全。”李根国说。
而为公共服务时,管理上的疏忽有时会带来安全隐患。
接受采访前一天,何萍就接到一个患者的投诉电话:他的乙肝病人身份在社区医院看小毛病时显示在系统上,病人既尴尬又愤怒。实际上,系统早有规定:为了避免歧视,对于传染病的一些数据共享要求是有严格保护的,只有在问诊相关病症时才会有所显示。但在一二三级联动过程中,数据推到基层,区里没有管理好。
“上层设计好了,技术才有支撑。”何萍感慨说。这个本科硕士都攻读信息工程的标准工科女,博士选择了管理学。
大数据是台综合大戏
2003年,从测绘专业毕业的毛炜青在一线工作了一段时间以后,3天内开发完成了一个基于服务的带有GIS分析功能的地名处理软件工具,在民防办信息中心的服务器上运行,这个基于地理位置的系统为当时社会管理者提供了整个上海市的流动与常驻人口的信息地图。
“地理信息本来就是综合的。”这位上海市测绘员基础信息地理中心的总工程师、国家注册测绘师对中国青年报记者说。在测绘一线工作时,他需要对测绘地的地质、水文甚至建筑、文化都有所了解才能做到精确。而如今,他越来越多地需要与其他政府部门合作,将地理信息与人口等信息相连。据他介绍,随着一个个cbd的兴起,现在的行业新热点是获取楼内的位置信息,用数据再造一座虚拟的热闹大楼,方便火灾监控等一系列的社会管理。
他的团队并不需要如阿里巴巴等商业公司一样,24小时在线为涌进来的数据准备着,他们所做的工作主要是利用超强的计算能力,汇集和加工数据。首先,从网络上搜集的和政府提供的数据。通过技术和人工的手段来甄别:哪些有用,哪些是垃圾;接着,对汇集的数据以应用的不同进行分类,打上标签,用特定的关键字就能查到。
何萍团队近期的工作是与银联的合作。从2010年起,上海许多医院开始推行各自的充值卡,用于院内消费。和银联合作后,一张卡可以在所有医院使用,既方便患者看病,又减轻窗口工作量。卡片轻松一划完成交易,需要涉及银行之间、医院之间划拨与结算。
“我们自己做一套结算体系,既费精力,又不专业,这需要行业间的融合。”何萍说。巧的是,在不久前的一次科研性奖项的竞争中,这两家是对手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13