
经验借鉴:运用大数据提升社会治理水平
现如今,大数据已经成为信息技术的新热点,其发展与应用有助于优化公共服务模式、提升社会安全保障能力与应急能力。
美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显著成效。以之为标杆,分析其典型做法,有助于我国学习借鉴先进经验,进一步做好维稳工作。
其一,以大数据提高反恐能力。“911”事件之后,美国政府在反思中发现,多个安全部门之间协调不到位、不能及时分享情报资源,是其虽然掌握了诸多线索却没能预防恐怖事件发生的重要原因之一。通过建立“棱镜”等大数据平台,运用大数据技术和分析手段,美国的国家安全部门能够以更高效率完成对多种来源数据的分析,并揭示出不同行为间的互动关系,进而能够运用分析算法预测危险分子的行动趋势。这为安全部门预防恐怖主义等威胁国家利益的行为提供了前所未有的可能。“棱镜”计划曝光后,美国政府部门再三强调其存在的合理性,虽然相当程度上是在为自己的不当行为进行掩饰,但其所说的发现和预防多起恐怖事件的成果,也绝非空穴来风。
其二,以大数据维护社会安全。除了政府部门的反恐工作外,让公共服务机构和企业提高安全警戒与防范能力,也是保障国家和社会安全的紧要工作。美国国家安全局和交通安全局基于数据挖掘技术,开发了计算机辅助乘客筛选系统,为美国本土各个机场提供应用接口。该系统将乘客购买机票时提供的姓名、联系地址、电话号码、出生日期等信息输入到商用数据库中,商用数据库则据此将隐含特殊危险等级的数字分值传送给交通安全局:绿色分值的乘客将接受正常筛选,黄色分值的乘客将接受额外筛选,红色分值的乘客将被禁止登机,且有可能受到法律强制性的关照。
其三,以大数据预防犯罪案件发生。防止犯罪事件特别是大规模暴力犯罪事件发生,是维稳工作的重要内容。以大数据为手段,能够提高从各种情报中“大海捞针”的水平,通过提取人们行为的时空规律性和关联性,进行犯罪预测。例如,加利福尼亚州桑塔克鲁兹市使用犯罪预测系统,对可能出现犯罪的重点区域、重要时段进行预测,并安排巡警巡逻。在所预测的犯罪事件中,有三分之二真的发生。系统投入使用一年后,该市入室行窃减少了11%,偷车减少了8%,抓捕率上升了56%。
其四,以大数据提高灾害预防能力。排查各类隐患、加强灾害防控是综合维稳工作的重要组成部分,而遏制火灾事故的发生可谓其中重点。以纽约市为例,该市约有100万栋建筑物,每年有差不多3000栋会因火灾损毁。由于城市状况复杂,消防人员往往难以第一时间赶赴现场,预防火灾成了减少损失的重中之重。为此,纽约市消防部门依据数据收集划分出了60个可能会产生火险的因素,包括区域居民平均收入、建筑物年龄、是否存在电气性能问题等。通过这些因素数据和相关算法,纽约市消防部门给建筑物都标注了风险指数,并据此确定消防检查的优先级和重点,从而有针对性地加强安全排查。
维护社会和谐稳定,涵盖的范畴非常广泛,既要维护国家安全和社会安全,也要着力化解矛盾纠纷和打击犯罪,还要通过加强舆论引导为保障与改善民生、预防犯罪等工作营造稳定的氛围。美国及其地方政府在其中诸多方面都已结合大数据实施了典型应用,值得中国学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13