
2016年大数据及其分析将影响深远
如果社会和商业形势如同电影行业里所预测那样,我们早已驾驶飞行汽车出行……当然,尽管在燃油效率、电动汽车方面取得巨大进展,目前仍旧没有实现飞行汽车的梦想。不过有一点可以肯定,在2016年一定会出现一些对企业和社会有着重大的影响新兴的技术。以下是我的一些“预测”:
实时分析将大放异彩
在2016年层出不穷的新技术之中,实时大数据分析绝对是最为耀眼的那颗珍珠。Instantly-actionable 分析与Rear-view 数据分析相比不再是一个可选项(而是必备选项)尤其是考虑到消费者和企业的状况。
现在,人人都期望相关且个性化的信息。幸运的是,此类数据的和处理不再被Netflix、Google 或者Amazon等大型云供应商上垄断(目前它已成为主流)。在2016年,各行各业的公司都有机会获得前所未有的机遇,如改善病人护理、增加农作物产量以便养活更多的人口。总而言之,各个公司将会更加明智地做出商业决策。
不可预见的领域将会出现新的威胁进而增加了用户的需求
随着实时大数据处理的时代来临,新业务的挑战也会随之出现。巨大的竞争威胁将自行出现的(而最大的威胁可能来自企业的核心产业),即使那些与你公司业务无关的或者那些从未想到会成为竞争对手的企业将会蚕食你的市场份额。所以企业必须具备分析数据的能力,预测新兴的威胁,并制定相应的策略应对;与此同时,企业也应重构和重新评估与客户的互动过程,以保持客户的忠诚度。
多年来企业一直以客户为中心而努力。然而,对大多数客户而言,他们从未看到过投资的回报,并且在当今的大数据时代,“好”已经远远不足以满足客户体验。在2016年,随着新的实时大数据技术到来,更多的公司将会真正地影响当今最为重要的客户体验。企业能够利用技术推送个性化信息、优惠和服务,以便实现更好的整体客户体验。将日常消费当做重要的事情处理是每个公司都应为之努力的方向;现在,随着实时大数据应用,客户在首次使用时就会感觉到不同企业的差异。
CIO将加速离职
在2016年,成功与失败的CIOs之间的差距将会越拉越大。那些开创性地使用云和大数据的公司CIOs会将这些技术推广更加实用化,并对商业规则的改变有着独特的见解。那些对此类技术不敏感的CIOs将会和他们的公司一道落后于时代的竞争。那些早已建立自己大数据平台的公司在2016年的大数据冲刺时将有着巨大的优势。随着Spark和 Spark 流的到来,他们能够充分发挥在Hadoop上的投资建立的数据仓库的真正潜力。大数据的拓荒者将在2016年得到他们的投资回报,并且成败CIOs之间的差距将越拉越大。
随着差距的增大,对高素质CIO人才的需求将会进一步提高。随着CIO人才争夺战开始,高水平的CIO将会被哄抢,而水平较低的将会被淘汰。在Talend Connect会议上,已经讨论一些将在2016年数据集成前沿的领军企业。这些领导者采用新的方式将不断增长的数据转化为可操作信息,这不仅提高了他们的业务,而且在很多情况下,也惠及了更广泛的用户。对于那些目前处于落后的公司来说,幸运的是现有的数据集成技术能使得部署 Spark能力更加快速简洁,这意味着能有机会迎头赶上。
企业将会重组
现在,实时大数据技术已成为改变商业规则的技术了,并将在2016年产生深远的影响,并也讨论了如不接纳这些新技术带来的不良后果,企业是时候采用此技术以保持领先的地位了。
大数据的时代的到临使得企业正在重新考虑他们的组织架构。实时大数据正在打破传统商业所谓的最佳实践和架构的障碍,“商业+IT”的模式将让位“商业+IT=创新企业”。那些能够弄清楚商业与IT何如合作并加以盈利的公司将会获胜。跨部门的创新中心必将出现,由CEOs、CIOs、CDOs和新涌现的职位CMTOs将利用各种的技能相互合作。这些信息的SWAT部门能转分析为收入,并驱动着企业开创前所未有的市场,同时也符合所有安全条例和隐私法规。在2016年,公司必须打破桎梏以期接纳实时大数据的下一个阶段,并将其作为实现贵公司未来一年的成功所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29