
大数据分析 为什么当下是时尚民主化时代?
2015年12月第二届数字时尚盛典举办,百度营销研究院代表分享《百度大数据洞见时尚趋势》报告。本文解析大数据下的时尚民主化。
当下是“全民共享时尚”时期?
时尚的「民主化」已经是当下正在发生的趋势。回顾时尚消费的发展历程,总的来说经历了大致三个阶段:从“上层阶级独享时尚”到“中产阶级始享时尚”再到“全民共享时尚”。
第一个阶段发生于中世纪晚期——工业革命前,皇室、贵族是主要的时尚消费群体,时尚主要是阶层区隔的产物,用以彰显社会地位。这时期时尚的传播模式也是自上而下的。
第二个阶段发生于工业革命开始后的大规模工业化生产与大众传媒普及的时期。这时期在一些文化媒介人(文艺人士、广告人、演员、大牌设计师等)、商人等群体的推动下,时尚消费从上层阶级扩展至中产阶级,很大程度上时尚消费是财富的象征,用以彰显经济地位。传播模式更加多元化:不再只是自上而下的,同时有自下而上、横向传播。
第三个阶段就是当下的互联网时代,也是一个全民时尚的时代。时尚走向民主化是必然趋势,有普通人消费能力提升的原因、有对美和时尚的需求迅速崛起的原因、也有互联网(从购买渠道的角度和品牌沟通的角度)拉近了奢侈品和大众之间的距离的原因等等。时尚的消费已经扩展到不同阶层、不同民族、不同年龄段、不同职业群体。
从百度搜索大数据来看,箱包、服饰、香水、腕表、美妆与珠宝首饰6大品类一年的检索量就高达8亿多,相对2014年上涨了4成;8亿多的检索量意味着庞大的消费基础。另一方面,以呛口小辣椒等为代表的网络时尚达人也蔚然成风,年均检索量也是千万级,互联网真正开启了全民参与创造时代。
时尚消费也不再只是彰显社会地位,或者彰显经济地位,也有彰显自我价值、自我生活方式的动机——这一点在年轻一代中更加明显。随着新兴媒体尤其是社交媒体的层出不穷,传播模式也变得更加复杂,更加多元化、立体化,可以说是纵横交错。
百度大数据何以洞见时尚趋势?
其实民主化,并不是事事都得无底线地贴近大众消费者的需求,而是对我们真正的消费者具有足够深入的了解和认知。
在今天,常常看到年轻的消费者表达“你若端着,我便无感”。其实在传统领域也是一样,品牌的核心价值观掌握在自己手里,但营销一定要建立在消费者研究的基础上。同理,时尚品牌的设计和审美主张需要是精英化的,自上而下的;但只有洞察了消费者是谁,在哪儿,喜欢做什么,我们才能够在正确的情境,把我们的品牌主张沟通到正确的人。
所以,我们主张对“时尚的民主化”的正确理解应当是:高冷地做,平和地说。
百度平台上,每天都发生着数百万次和时尚相关的搜索。每一次搜索和点击的背后都是消费者真实的兴趣和行为。通过对这些行为大数据的挖掘和分析,我们能够看出一些品类、单品在2015年的流行趋势演变。比如我们将一些常见的女装单品的搜索量数据进行细分,发现铅笔裙、白色蕾丝连衣裙、露肩上衣等单品在今夏出现季节性爆发,而皮裙、高领毛衣等单品在秋冬季节表现强势。
为了探索大数据对时尚趋势的预测和洞察力,百度营销研究院做了两个尝试。
尝试一:对比中国(百度)和美国(Google)的检索趋势异同。
事实发现,由于国内大众消费者对时尚单品的认知和渗透率仍然比较有限,在品牌的持续教育下,大多数单品的两年间检索量在国内都是持续上升的,即便是单肩礼服等Google检索量持续下降的单品,在国内的搜索量仍然稳中有升。
白蕾丝连衣裙等国外季节性爆发的单品在国内几乎能够同步走红,充分体现出互联网能够及时将流行趋势传导到国内。
Vintage古董衣在美国并不是一个新概念,今年初在国内曾短暂引领潮流,但由于文化差异原因,国内的普通消费者可能难以接受将古董衣作为日常穿着,因此检索量数据也是昙花一现。
尝试二:用数据模型方法预测未来趋势。
我们分别考察了常见的时装单品、流行元素、色系的检索量趋势,并通过数据模型的方式,来尝试它们预测明年春夏季节的未来表现。
我们使用时间序列预测方法,基于过去两年内的检索量,挑选出明年春夏季节检索量将会走高的单品、图案和基本色系。进而选出了明年春夏最有可能流行的一些时装组合,包括上衣&裤装组合、裙装、设计元素组合等等。
时尚和人的喜好是主观的。人心向背受到太多的因素影响,或许未来某一天的一个明星同款、一个综艺节目,都能够带动一波潮流。
我们试图用百度的搜索大数据去预测未来的时尚潮流,因为我们相信大数据的价值。这些数据来自每一次真实的点击和搜索,来自每一句真心的吐槽和点赞。我们坚信大数据能够,也应当为品牌度量人心,也希望更多的品牌能够发现数据之美。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10