
就算不做数据分析师也要学会这8个IF函数
今天所讲的IF函数,包括excel中含有IF的系列函数,共有8个,每个函数列举最了常用的2~3个公式,希望能对同学们有用。
作用:根据条件进行判断并返回不同的值。
示例:
1、如果A1单元格值大于100,显示“完成”,否则显示“未完成”
=IF(A1>100,"完成","未完成")
2、判断成绩
=IF(A1<60,"不及格",IF(A1<80,"良好","优秀"))
3、如果A1的值大于60并且B1不为空,显示“已结束”否则显示“未结束”
=IF(AND(A1>60,B1<>""),"已结束","未结束")
作用:把错误值显示为指定的内容
示例:
1、如果A1/B1返回错误值,则显示空
=Iferror(a1/b1,"")
2、如果Vlookup查找不到值,则显示空
=Iferror(vlookup(省略),"")
作用:根据条件统计个数
示例:
1、计算A列有多少财务部的人员
=Countif(a:a,"财务部")
2、计算A列有多少个包括“北京”的公司名称
=Countif(a:a,"*北京*)
作用:根据条件求和
1、统计C列大于1000的销售金额之和
=Sumif(c:c,">1000")
2、统计A列产品为“三星”所对应B列的销售个数
=Sumif(a:a,"三星",b:b)
作用:多条件计数
示例:
1、公司1的人事部有多少人(A列公司名称,B列部门名称)
=COUNTIFS(A2:A11,"公司1",B2:B11,"人事部")
2、工资在3000~4000之间的有多少人(D列为工资)
=COUNTIFS(D2:D11,">3000",D2:D11,"<4000")
作用:多条件求和
示例:
1、公司1人事部工资和(A列公司名称,B列部门名称。D列工资)
=SUMIFS(D2:D11,A2:A11,"公司1",B2:B11,"人事部")
2、A列为"电视",B列包括34的C列数量之和
=Sumifs(C:C,A:A,"电视",b:b,"*34*")
作用:根据条件计算平均数
示例:
1、计算C列单价小于10的平均单价。
=AVERAGEIF(C:C,"<10")
2、计算C产品的平均单价(A列为产品名称)
=AVERAGEIF(A:A,"C",B:B)
作用:多条件计算平均值
示例:
1、计算甲公司,经理级的平均工资(A列公司名,B列职称,C列工资金额)
=AVERAGEIFS(D2:D11,A2:A11,"甲公司",B2:B11,"经理")
2、统计工资在4000~8000之间的平均工资
=AVERAGEIFS(D2:D11,D2:D11,">4000",D2:D11,"<8000")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19