
基于技能的改善数据科学实践的方法
在当今的大数据时代,利用数据科学理论进行数据分析起着越来越重要的作用。探讨不同数据技巧类型和熟练程度对相关项目有着怎样的影响也开始具有重要意义。近日,AnalyticsWeek的首席研究员、Bussiness Over Broadway的总裁Bob Hayes博士就公开了研究数据分析项目成功所必需技能的相关结果。Bob所提出的基于技能的数据科学驱动力矩阵方法,可以指出最能改善数据科学实践的若干技能。
首先,Bob在AnalyticsWeek的研究包含了很多向数据专家提出的,有关技能、工作角色和教育水平等有关的问题调查。该调查过程针对5个技能领域(包括商业、技术、编程、数学和建模以及统计)的25个数据技能进行,将其熟练程度划分为了6个等级:完全不知道(0分)、略知(20分)、新手(40)、熟练(60分)、非常熟练(80分)和专家(100分)。这些不同的等级就代表了数据专家给予帮助或需要接受帮助的能力水平。其中,“熟练”表示刚好可以成功完成相关任务,为某个数据技能所能接受的最小等级。“熟练”以下的等级表示完成任务还需要帮助,等级越低需要的帮助越多;而“熟练”以上的等级则表示给予别人帮助的能力,等级越高给予的帮助可以更多。
Bob列出了4中不同工作角色对于25种不同数据技能的熟练程度。从上图可以看出,不同领域的专家对其领域内技能的掌握更加熟练。然而,即使是数据专家对于某些技能的掌握程度也达不到“熟练”的程度。例如,上图中浅黄色和浅红色区域都在60分以下。这些技能包括非结构化数据、NLP、机器学习、大数据和分布式数据、云管理、前端编程、优化、概率图模型以及算法和贝叶斯统计。而且,针对以下9种技能,只有一种类型的专家能够达到熟练程度——产品设计、商业开发、预算编制、数据库管理、后端编程、数据管理、数学、统计/统计建模以及科学/科学方法。
并非所有的数据技能都同等重要
接下来,Bob继续探讨了不同数据技能的重要性。为此,AnalyticsWeek的研究调查了不同数据专家对其分析项目结果的满意程度(也表示项目的成功程度):从0分到10分,其中0分表示极度不满意,10分表示极度满意。
对于每一种数据技能,Bob都将数据专家的熟练程度和项目的满意度进行了关联。下表就列出了4种工作角色的技能关联情况。表中关联度越高的技能就表示该技能对项目成功的重要性越高。而表中上半部分的技能相比于下半部分的技能对于项目结果更加重要。从表中可以看出,商业管理者和研究者的数据技能和项目结果的满意度关联度最高(平均r=0.30),而开发人员和创新人员的关联度只有0.18。此外,四种工作角色中不同数据技能之间的平均关联度只有0.01,表明对于一种数据专家是必须的数据技能对于其他数据专家未必是必须的。
基于熟练程度和关联度的结果,Bob绘出了数据科学驱动力矩阵(Data Science Driver Matrix,DSDM)的示意图。其中,x轴代表所有数据技能的熟练程度,y轴代表技能与项目结果的关联度,而原点则分别对于熟练程度的60分和关联度的0.30。
在DSDM中,每一种数据技能都会落在其中的一个象限中。由此,这种技能所代表的含义也就不同。
Bob针对商业管理者、研究者、开发人员和创新人员4中角色分别创建了DSDM,并主要关注落在第一象限的技能。
商业管理者对于商业管理者而言,第一象限中的技能包括统计学/统计建模、数据挖掘、科学/科学方法、大数据和分布式数据、机器学习、贝叶斯统计、优化、非结构化数据、结构化数据以及算法。而没有任何技能落在第二象限。
开发人员对于开发人员,只有系统管理和数据挖掘两种技能落在第一象限。绝大部分技能都落在第四象限。
创新人员对于创新人员,共有数学、数据挖掘、商业开发、概率图模型和优化等五种技能落在第一象限。而绝大部分技能都落在第四象限。
研究者对于研究者,共有算法、大数据和分布式数据、数据管理、产品设计、机器学习和贝叶斯统计等五种技能落在第一象限。而落在第二象限的技能却很少。
从以上的研究中,Bob得到以下结论:
除此之外,Bob还提出团队合作对于项目成功也有着非凡的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28