
大数据分析在安全防御中的前世今生
在《碟中谍5:神秘国度》中,神勇的阿汤哥再一次完成不可能任务,冒死进行无氧潜水更换了储存信息的芯片。这是因为其所要进入的领域启用了“步态分析识别密码”,即通过机器扫描进入者的走路姿势、行动喜好,一旦检测异常立即释放高能电压。而实际上,随着大数据安全分析技术和产品的发展,这样的高级密码形式或许在不久的将来便会从银幕走进现实。
试想,在未来,即使有人掌握了你的开机密码,也根本无法成功打开你的电脑。如何才能做到这一点?“在原来的安全认证体系中,我们一般都是通过基于身份认证的控制、以及口令、令牌等来解决安全问题。而现在,我们可以把人的因素和情景的因素全部进行结合,例如根据使用者键盘的使用习惯,对这些数据进行细腻度的精准分析,即便有人掌握了口令而使用习惯不对,也照样无法打开。”在近日北京的一场采访中,启明星辰集团副总裁、泰和本部负责人张颖如是说道。而张颖同时也强调:如果不是使用大数据分析,仅靠传统的常规安全手段是做不到这一点的。可以说,大数据安全分析正在为企业的安全防御带来质的改变。
在即将过去的2015年,无论是大数据安全分析,还是数据驱动安全的口号都变得异常火热,其似乎已成为安全界公认的未来安全的发展重要方向之一。那么,大数据安全分析究竟为安全带来了什么?它究竟因何“火”了起来?
对此,启明星辰泰和本部产品总监叶蓬谈道:“其实,大数据本身在学术界的一些相关理论、研究出现的比较早,但是真正得到大规模应用,还是随着近年来互联网应用的逐渐兴起应运而生的。对于安全领域来说,引入大数据分析的手段所带来的利好首先表现在效率得到了大大的提升,其次,一些大数据分析算法的引入、以及针对安全领域的新算法的出现,都将为未来的安全带来一种质的提升。”
同时,叶蓬认为,当前从总体上而言大数据安全分析技术作为热点已经炒作到了最高峰,但单纯从大数据安全分析在安全层面的应用来看,尚处于发展初期,但对这一技术本身来说,已经越来越趋于成熟了。目前,已经有先进或者领先的安全企业推出了新相关产品。
据悉,启明星辰集团已经将大数据分析技术充分融合到现有安全管理平台技术架构中,发布了其新一代安全管理平台系列产品。而在此之前,启明星辰已跟踪大数据安全分析技术有五年多之久。之所以在现在才推出相关的产品,张颖说道:“我们更注重的是当一个新的技术发展程度要达到工程化和产品化的时候,对我们而言才会迎来一个转折点。大数据安全分析在去年的呼声特别高,发展至今年,一些开源的技术和相关的技术群已经形成了。而启明星辰在这个时候推出我们的大数据安全分析平台,可以骄傲的说我们发布的就是成熟的产品,客户已经可以直接享受到大数据安全分析的成果。”
而对于企业的安全防御而言,大数据安全分析的应用还有其独特之处。“对于大数据安全分析产品的定位一定要准确,企业级客户使用的是一个相对封闭的内网,其所产生的数据与互联网有着本质的区别。”叶蓬说道:“互联网数据我们称之为‘窄数据’,这些数据比较单调,都是一些防病毒或者Web应用等,虽然它的量会超级大,但是分析的种类并不是很多。而在企业网里面,用户的应用、协议、数据种类很丰富,数据的宽度很大、深度也比较深,数据分析的维度特别高。企业级的大数据分析在提升数据质量、分析展现的时候都会有所不同。”
在过去,因为缺乏相关技术,企业级应用里所产生的数据很难被全部统一存储起来,只能筛选出最具价值的数据进行分析。而如今,对大数据安全分析技术的利用使得我们可以对全量的数据进行分析。
在此背景下,与互联网企业利用大数据分析技术有所不同,作为专注企业级安全防御的安全厂商,启明星辰的战略导向十分明确。对此叶蓬向记者说道:“首先,我们不会将企业网的数据拿去赢利,而是用来作为解决用户的安全问题。因此我们也在也很积极的参与威胁情报、联盟,以及威胁情报的分析等工作,我们在企业安全领域深耕了十几年,从企业安全数据的丰富度上讲我们的理解要深入得多,我们的优势就是在于我们更聚焦,我们更懂企业安全数据、更理解企业的安全数据。”
我们看到,在即将过去的2015年,国家《促进大数据发展行动纲要》正式发布,大数据的发展已经成为国家层面的顶层设计。在安全领域,随着大数据分析技术的不断引入和应用,未来的安全防御态势将随着数据的不断丰富带来潜移默化的改变。“大数据安全分析对安全的改变达到从量变到质变的时刻一定会到来,届时,整个信息化的业务方式、互联网的组网方式、以及整个安全防御方式,都将全部会改变。”张颖说道。
而着眼于实际,在即将到来的新的一年中,让大数据安全分析更加见到实效、让大数据应用场景更加丰富、从而为用户带来更大的数据价值,将成为企业级安全界对自己的期许和努力方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05