
大数据时代的营销怎么做?
大数据时代的营销怎么做?各公司在大数据方面出手阔绰。首席营销官调查网站(The CMO Survey)报道称,目前大约有5.5%的营销预算用于营销分析,这个数字将在未来3年内增加到8.7%。大家的期望值很高,许多公司正试图弄清楚如何破译数据,从中获得卓越的战略见解。
我非常支持这种获取和利用数据来推动决策的趋势。然而,这也是问题所在。随着数据量的增长,企业的数据利用率越来越低。我首先在2012年2月提出了如下问题:“在你的公司作出决策前,对现有或者索取的营销分析数据加以利用的项目占多大比例?”得到的结果是37%,当时我觉得这个比例太低。但当我在2013年8月提出同样的问题时,比例降至29%。图1显示了这个比例在过去18个月里持续下降。
但这个调查结果并非完全出人意料。回顾30年来相关调查的历史,数据利用率始终偏低,很多种类的营销信息都是如此,包括营销调研、广告调研和现在的社交媒体调研。这种偏低的营销分析数据利用率妨碍了大数据对利润的贡献。
妨碍有多大?有些人可能会说,营销分析等各种市场情报的最终衡量标准是能否增进企业对客户的了解。首席营销官调查网站请顶级营销人员对他们公司在“获得和利用对客户的深入见解”方面的表现打分。满分为5分,1分是糟糕,2分是尚可,3分是普通,4分是良好,5分是优秀。回顾过往得分,结果显示仍然处于普通水平(2013年8月为3.4分,2012年2月为3.5分,2009年8月为3.5分)。因此,即使用于营销分析的花费增多,但我们并未看到对客户的深入见解有所提高。
企业应该怎么做?首先,管理人员必须以终为始。上市计划、创造需求的活动和销售活动必须包括关于哪些数据应该收集以及如何利用它们的具体说明。当计划和策略中植入了大数据方案的时候,偏低的利用率可能会上升。
其次,企业必须花钱培训管理人员,让他们知道如何利用营销分析来获得洞察力、推动决策、实施策略和评估他们已经采取的行动。正是出于这个原因,我们在福库商学院(Fuqua)教授“市场情报”课程,专注于信息的“使用”而非“创造”。企业必须更加重视市场分析的应用部分。机构和咨询公司可以提供这类培训。
第三,企业必须找到和留住那些能够充分利用市场分析的合适人才。当问及“你的公司在多大程度上拥有能够充分利用市场分析的合适人才?”时(1分为没有合适的人才,7分为有合适的人才),仅仅3.4%的受访者给自己的公司打了7分,56%的人打了低于平均水平的分数。图2显示了完整的分数分布情况(平均分为3.4分,标准偏差为1.7分)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29