
大数据时代: 大数据时代的 商业创新
大数据不是一个新的现象,或者是数据根本就不是一个新的现象。上世纪1920年代,在美国出现了所谓的直销业,大量的百货公司开始进行所谓的直销,给每家每户送目录,这就是开始采集用户的数据来进行个性化的营销。到1982年,美国的一些航空公司出现了客户忠诚项目,航空公司开始有大量的客户交易行为数据。
商业创新涉及产品整个价值链
从商业创新的角度来看,更多的是围绕着管理现有和潜在顾客的全生命周期,在你购买之前、购买之后,全媒体、全渠道。无论是pc、手机,还是线下o2o,所有跟这个企业的社会互动,把这些数据收集起来,就能做出一个很好的预测。而且传统的数据营销,产品投放市场以后,只是单纯地做营销。现在,商业的创新是更多延伸到产品整个价值链的上下游商业的创新。
大数据时代,商业创新的市场趋势和一些商业创新出现新的范式。
我们现在处于一个社会化互联网时代,早就过了门户时代。现在的互联网是一个社会化的互联网,其内容主要是用户提供的,用户的内容都可以自己生成,而不是由企业生成的。
互联网时代,最主要是两种形式:一种叫口碑,就是“言”;另外一种是观察模仿,或者叫观察学习,就是“行”。
大数据时代的商业创新,既然是围绕着社会互动展开的,就有一个很重要的特点:社会化互联网使社会互动成为企业的一个重要的战略变量,无论是口碑还是观察模仿,在传统的线下,企业没有办法直接操控。中国有一句谚语:酒香不怕巷子深,但现在不一样,现在很重要的一个特点是,商业创新要看各种各样的新的商业模式,很多完全是围绕这个展开的。
口碑:
新的营销决策变量
从过去这些年的研究中,可以发现的一些有关口碑的例子。比如亚马逊1995年最早推出消费者的口碑,第一次把消费者的口碑当做企业操控的变量,它可以决定提供还是不提供。这里,我们要思考口碑给企业带来了什么样的影响,功能是什么。
观察学习也是这样,也是亚马逊最早开始做的。我们在线下排队的时候,亚马逊很轻易地放到网站上,后台可以统计出看过某款产品的客户,最终有多少人购买这款产品。
我们看到100个顾客从餐馆门前走过,最终有多少人进了这个餐馆,多少人进了对面的餐馆,这就是在现实生活中大家去吃饭时关心的数据。企业仍然能够把它当做直接操控的战略变量,这就改变了很多商业的游戏规则。
另外,社会互动的类型成为企业直接管理的变量。其实,另外一种社会互动的异质性本身或者同质性本身,也成为企业管理战略的变量,这是我们要在另外一篇文章里面讨论的问题。
商业创新:
立足社会互动的战略管理
商业创新是围绕着利用社会互动来影响产品投放市场以后的战略吗?其实远远不止,社会互动还可以影响到整个价值链的上下游。企业用消费者社会的互动来做新产品的测试,更重要的是新产品测试的时候就在做营销了。
身处大数据时代,商业创新一个很重要的立足点就是怎么来进行社会互动的战略管理。社会互动的异质性取决于社会网络关系,社会互动不同的类型不仅可以影响企业做决策,还受现在移动互联网o2o的影响,它也是一个战略变量。
其实在大数据时代,你仍然可以做社会互动。美国芝加哥的一家公司是卖t恤衫的,任何一个人都可以把自己设计的t恤衫上传到这个网站,得票高的由这个网站生产。这样来做新产品开发,同时也是在做新产品的测试,也是在做新产品的营销。什么意思呢?在大数据时代,如果你要基于社会互动战略管理的时候,我们过去商业上决策的流程是一种串行。现在是一个并行,我在做营销的时候,我就应该在做研发,我在做研发的时候,我应该就在做营销,不应该把它割裂开来。
社会互动:
企业可操控的战略变量
传统的市场主体企业创造价值,顾客消费价值。是谁创造价值,谁消费价值呢?实际上是消费者在创造价值,企业在消费价值。而传统市场的功能是在做价值的交换和资源的配置,但是价值的交换前提是:谁是价值的创造者,谁是价值的消费者非常清晰,而现在并不清晰,现在市场最主要的功能更多的是在做一种资源的整合和价值的共创。市场的主要调节机制不仅是供求价格,更多是社会互动。
人类社会一直有社会互动,社会互动现在成为市场调节的主要机制?一个很重要的条件是,价格之所以成为调解价值,第一是价格可观测、可度量,第二是价格可调控。
由于互联网、大数据技术,社会互动成为企业可以操控的战略变量。大数据技术可以把用户在微博、微信上互动的内容分析提取出来,知道什么价值有用,什么价值没用,这就是大数据时代对商业创新的影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05