京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代: 大数据时代的 商业创新
大数据不是一个新的现象,或者是数据根本就不是一个新的现象。上世纪1920年代,在美国出现了所谓的直销业,大量的百货公司开始进行所谓的直销,给每家每户送目录,这就是开始采集用户的数据来进行个性化的营销。到1982年,美国的一些航空公司出现了客户忠诚项目,航空公司开始有大量的客户交易行为数据。
商业创新涉及产品整个价值链
从商业创新的角度来看,更多的是围绕着管理现有和潜在顾客的全生命周期,在你购买之前、购买之后,全媒体、全渠道。无论是pc、手机,还是线下o2o,所有跟这个企业的社会互动,把这些数据收集起来,就能做出一个很好的预测。而且传统的数据营销,产品投放市场以后,只是单纯地做营销。现在,商业的创新是更多延伸到产品整个价值链的上下游商业的创新。
大数据时代,商业创新的市场趋势和一些商业创新出现新的范式。
我们现在处于一个社会化互联网时代,早就过了门户时代。现在的互联网是一个社会化的互联网,其内容主要是用户提供的,用户的内容都可以自己生成,而不是由企业生成的。
互联网时代,最主要是两种形式:一种叫口碑,就是“言”;另外一种是观察模仿,或者叫观察学习,就是“行”。
大数据时代的商业创新,既然是围绕着社会互动展开的,就有一个很重要的特点:社会化互联网使社会互动成为企业的一个重要的战略变量,无论是口碑还是观察模仿,在传统的线下,企业没有办法直接操控。中国有一句谚语:酒香不怕巷子深,但现在不一样,现在很重要的一个特点是,商业创新要看各种各样的新的商业模式,很多完全是围绕这个展开的。
口碑:
新的营销决策变量
从过去这些年的研究中,可以发现的一些有关口碑的例子。比如亚马逊1995年最早推出消费者的口碑,第一次把消费者的口碑当做企业操控的变量,它可以决定提供还是不提供。这里,我们要思考口碑给企业带来了什么样的影响,功能是什么。
观察学习也是这样,也是亚马逊最早开始做的。我们在线下排队的时候,亚马逊很轻易地放到网站上,后台可以统计出看过某款产品的客户,最终有多少人购买这款产品。
我们看到100个顾客从餐馆门前走过,最终有多少人进了这个餐馆,多少人进了对面的餐馆,这就是在现实生活中大家去吃饭时关心的数据。企业仍然能够把它当做直接操控的战略变量,这就改变了很多商业的游戏规则。
另外,社会互动的类型成为企业直接管理的变量。其实,另外一种社会互动的异质性本身或者同质性本身,也成为企业管理战略的变量,这是我们要在另外一篇文章里面讨论的问题。
商业创新:
立足社会互动的战略管理
商业创新是围绕着利用社会互动来影响产品投放市场以后的战略吗?其实远远不止,社会互动还可以影响到整个价值链的上下游。企业用消费者社会的互动来做新产品的测试,更重要的是新产品测试的时候就在做营销了。
身处大数据时代,商业创新一个很重要的立足点就是怎么来进行社会互动的战略管理。社会互动的异质性取决于社会网络关系,社会互动不同的类型不仅可以影响企业做决策,还受现在移动互联网o2o的影响,它也是一个战略变量。
其实在大数据时代,你仍然可以做社会互动。美国芝加哥的一家公司是卖t恤衫的,任何一个人都可以把自己设计的t恤衫上传到这个网站,得票高的由这个网站生产。这样来做新产品开发,同时也是在做新产品的测试,也是在做新产品的营销。什么意思呢?在大数据时代,如果你要基于社会互动战略管理的时候,我们过去商业上决策的流程是一种串行。现在是一个并行,我在做营销的时候,我就应该在做研发,我在做研发的时候,我应该就在做营销,不应该把它割裂开来。
社会互动:
企业可操控的战略变量
传统的市场主体企业创造价值,顾客消费价值。是谁创造价值,谁消费价值呢?实际上是消费者在创造价值,企业在消费价值。而传统市场的功能是在做价值的交换和资源的配置,但是价值的交换前提是:谁是价值的创造者,谁是价值的消费者非常清晰,而现在并不清晰,现在市场最主要的功能更多的是在做一种资源的整合和价值的共创。市场的主要调节机制不仅是供求价格,更多是社会互动。
人类社会一直有社会互动,社会互动现在成为市场调节的主要机制?一个很重要的条件是,价格之所以成为调解价值,第一是价格可观测、可度量,第二是价格可调控。
由于互联网、大数据技术,社会互动成为企业可以操控的战略变量。大数据技术可以把用户在微博、微信上互动的内容分析提取出来,知道什么价值有用,什么价值没用,这就是大数据时代对商业创新的影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31