
移动大数据这一年:一边是海水,一边是火焰
大家还在对Facebook的动辄百万台服务器以及淘宝每天几百个T的数据,表现出无比羡慕、嫉妒、恨。转眼间一年过去了,移动大数据领域的改变却在悄然发生。
估计各家市场调查机构很快会放出各种全年报告,来说明智能手机的出货量远远超过PC出货量。由于Win8市场表现不佳,今年全球PC销量的首次下滑将会很快成为现实。市场规模此消彼长,迫使更多的企业采取Mobile First战略。
根据TalkingData平台2012年第4季度的统计数据显示,活跃用户每日打开应用次数以及使用时长呈规律性,用户的行为数据具有一定的研究价值。
由于智能手机的大量的出现,携带众多传感器的移动设备给数据系统提供了更多的高质量情景数据,可以评估人们平时看不见的行为和社交互动,还可以使用新算法来挖掘这种数据的价值。
其实移动大数据领域研究并不是今年才开始的,2012年也不是所谓的“移动大数据元年”。近10几年来,包括政府、运营商、设备厂商出于管控、商业等多种目的,持续投入巨资在移动数据挖掘领域,特别是和可携带设备相关的一些项目。
这些项目的重点在于通过移动设备采集数据(位置、语音,等各种传感器),通过数据挖掘的方法来了解人们的情绪变化以及社交情况,对于人们未来的行为进行预测。
比较有名的情景感知项目如:MIT的Reality Mining(现实挖掘)、Nokia的Context Phone、DARPA的Pal(目的是为指挥官和作战人员提供革命性的辅助系统)、以及Parc的Magitty。
近年来由于触屏手机的迅速普及,人机交互成为移动应用的主要瓶颈,产业界研究的关注点在于如何改善输入体验,得益于此,源于Pal项目的Siri,由于定位于学习型个人助理,在苹果收购SRI后终于修成正果。
说到移动大数据的未来,大家一致看好Augment Reality,如果说Google Glasses以及无人驾驶汽车让大家初窥端倪的话,目前多家公司在虚拟三维建模领域的突破可以说让人家充满憧憬了,实现之效果远不是Layer这些基于物理标识的简单滤镜可以比拟的。
以上主要是对于未来有一个美好的展望。下面,我们一起来看看移动大数据对于开发者意味着什么。
今年一提到大数据,很多专家就开始讲3V:Volume、Variety、Velocity。这3V表明大数据的三方面特质:量大、多样、实时。窃以为这种理论性的描述并不解决任何实际问题,对于移动应用来说,更多地是在于如何通过数据挖掘改善产品体验、差异化竞争、产生商业价值。下面就举例说明一下移动大数据对于移动应用的影响和促进。
这两年已经出现了不少基于数据的创新性的应用,包括国内一些创业公司也开始在语音识别/图像识别/人脸识别/增强现实等模式识别方面取得了一些进步,产品差异化竞争方面做得比较好,但对于用户体验方面仍有很长的路要走。
经常被一些大佬问及“你认为新的流量入口是什么?”个人认为肯定不是目前那些雷同的应用市场形态,未来的应用扩散模式应该是基于个性化的应用推荐或用户自发发现。这方面,Discovr这款应用一定程度上代表了这个发展趋势。
Discovr 使用互动地图的方式来标记应用,只要搜索一个应用就能获得应用推荐的大量应用,并能直观地显示应用介绍,并能够根据人们的选择来不断的学习,适应人们的喜好。
通过数据作出预测是,是另外一个移动大数据应用发展方向。比如,Decide为消费者提供使用专用数据和预测算法的工具,让他们充分了解何时是最佳购买时机?是否应该等待降价?或预计几天后就会发布的新产品的出现。
将移动大数据应用的比较好的应用类型还有很多,由于篇幅关系,这里就不一一列出来了,有兴趣读者可以与我们进一步交流。
从上面这些例子不难看出,实际上大数据对于移动互联网来说,绝不仅仅是统计应用下载量这么简单,如果只是用来计数,实在对不起“大数据”这么响亮的名字。数据完全可以更为紧密、灵活的与移动互联网、移动应用相结合。除了细致的用户行为数据挖掘可以帮助开发者优化产品、调整市场策略外,诸如机器学习引擎之类的高级大数据应用模式,可以为我们带来更大的价值。下面简单介绍一下目前主流的机器学习引擎近况。
对于大部分移动应用开发者来说,主要精力还是放在产品、服务本身的开发、运营以及优化。而大多数应用开发技术人员往往缺乏足够的数学背景、算法知识,如果无意愿自己实现基于机器学习的运算框架,目前有几个机器学习框架、服务可供选择。
Google Prediction API是一个基于云服务的机器学习工具,它可以帮助开发者分析数据,并为应用程序加入情感分析、流失预测、产品推荐等功能,缺点是根据调用次数/数据点收费,成本规模不好控制。
Apache Mahout 是 Apache Software Foundation (ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序,在 Mahout 支持采用 Apache Hadoop 的基础框架,使这些算法可以更高效的运行在云计算环境中,是自己实现分析系统比较好的选择。
Talkingdata Insight就是腾云天下推出的针对移动互联网应用的机器学习方案,接口采用Restful风格的API,提供包括关联推荐、个性化推荐、用户重定向、用户标签、付费意愿预测、流失概率预测等算法,同时提供数据清洗/模拟仿真工具。目前国内已经有包括第三方商店、移动广告网络,游戏CP等类型的客户。
现实是,移动开发者一方面面对美好的未来,另一方面还要考虑如何艰难得生存着,然而数据运营的挑战是必须要面对的,个人建议:
必须重视原始数据的收集和整理,很多开发者抱有“先存着,有用时再说”的心理。殊不知绝大部分数据挖掘项目就是死在数据清洗这个环节上。
不断思考,如何利用数据和对手差异化以及构筑竞争壁垒。以后的应用的核心竞争力毋庸置疑就是基于数据的对于客户以及市场的了解,谁能预先布局,就能在竞争中取得优势,而这样的差异性是山寨不来的。
小步快跑,没必要浪费资源在那些基础的“发明轮子”的工作上,尽量采用成熟的产品,通过小的迭代,不断优化数据分析过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10