京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的五点思考
大数据不在乎体量有多少,而是背后用它的那个大脑。实则大众对大数据依然存在不少误解。刘得寰教授在微博上发表了其对大数据的五点思考(后续可能还有更新),对近期大数据被大众捧为瑰宝的做法提出了自己不同观点:
任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企业来讲,竞争对手的数据价值远远超过自己网站数据的价值,从量级上,对于所有公司都一样,自己拥有的数据远远小于全集数据。看起来的全数据恰恰是残缺数据。
数据量的大幅增加会造成结果的不准确,来源不同的信息混杂会加大数据的混乱程度。研究发现:巨量数据集和细颗粒度的测量会导致出现“错误发现”的风险增加。那种认为“假设、检验、验证的科学方法已经过时”的论调,正是大数据时代的混乱与迷茫,人们索性拥抱凯文凯利所称的混乱。
互联网用户的基本特征、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户的基本行为规律。体系完整是所有分析性工作的第一步,完整的框架甚至胜过高深的模型。人类的认识最大的危险是不顾后果的运用局部知识。如果只关心自己网站数据,其分析基础必然是断裂数据。
现在谈到大数据,基本有四个混乱观念:第一,大数据是全数据,忽视甚至蔑视抽样;第二,连续数据就是大数据;第三,数据量级大是大数据;第四,数据量大好于量小。对应的是:抽样数据只要抽样合理,结论准确;连续只是一个数据结构;大量级的噪音会得出错误结论;大小与价值关系不大。
大数据不是新事物,天气、地震、量子物理、基因、医学等都是,借鉴他们的方法有益。他们用抽样调查。互联网数据挖掘方法论也如此,不同的是更难,因为人的复杂性。既然是关于人的研究就需应用所有研究人的方法梳理大数据。只要懂编程、懂调动数据的人就可以做大数据挖掘的说法是谬误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31