京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据解决城市拥堵
随着人口的增长,公交、火车以及其他的运输设备将变的越来越拥堵。公共运输部门从调查、摄像机中获取定性数据描述拥堵,城市引擎(Urban Engines)公司却相信通过智能算法和大数据系统可以高效解决拥堵问题。
Urban Engines从谷歌风投等公司获得了大量融资,金额未作披露。公司创始人包括Balaji Prabhakar、Deepak Merugu和Google的前设计师Shiva Shivakumar和Giao Nguyen。Shivakumar曾是谷歌在2001年至2010年期间的技术总监和出色的企业家,并且帮助建造了 Adsense、Search Appliances和Cloud Apps等项目。Prabhakar是斯坦福大学社交网络研究中心教授,是让社交网络更智能、更具规模、更有效的研究发起人。
Urban Engines源自于Prabhakar关于城市拥堵的研究和对供需关系的理解,人们如何运用公共交通以及如何从高峰到非高峰期转换人们的行为。Prabhakar和Shivakumar发明了SaaS,可以用来监测交通状况。
Urban Engines软件使用的数据来自城市运输系统,通过空间分析重现城市运输系统。软件还能帮助实施奖励计划,以奖励的方式增加增加公共交通参与,缓解高峰期拥堵。
这些数据来源于一种简单的标记方式:当人们刷卡进出火车站或者汽车站时,铁路和公路系统会收集数据作支付结算,但不作交通分析。Urban Engines将量化这些数据,然后分析每条公交和火车线路的拥堵程度、等待时间、历史数据等讯息。
Prabhakar将这视作“群体感应”,通过感应人们的刷卡行为来确定他们所处位置,这听起来有些复杂,事实上也是如此,团队成员对算法和技术进行了多年的研究 。Shivakumar表示:“运输部门知道火车的具体位置,却不知道人在哪儿。”
Urban Engines软件获交通部门批准,一旦部署到云端,它就能知道哪一站上来了多少乘客,哪一列火车已经不堪重负等信息。更有趣的是交通部门可以与历史数据进行比较,获知应该增加哪些线路或者增加哪条线路的公交车数量。
Urban Engines已经进行过一些测试。通过与世界银行合作,巴西圣保罗正在使用Urban Engines的解决方案改善交通系统,新加坡使用Urban Engines缓解高峰期的交通压力,而华盛顿特区已经将其完全应用于铁路系统。
Urban Engines表示,他们想要让世界上100多个人口众多的城市的运输变得更有效,公司的系统会发挥很大作用。通过这个软件,可以理解交通系统的运行,为决策提供参考,从而节约时间和金钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31