
用大数据解决城市拥堵
随着人口的增长,公交、火车以及其他的运输设备将变的越来越拥堵。公共运输部门从调查、摄像机中获取定性数据描述拥堵,城市引擎(Urban Engines)公司却相信通过智能算法和大数据系统可以高效解决拥堵问题。
Urban Engines从谷歌风投等公司获得了大量融资,金额未作披露。公司创始人包括Balaji Prabhakar、Deepak Merugu和Google的前设计师Shiva Shivakumar和Giao Nguyen。Shivakumar曾是谷歌在2001年至2010年期间的技术总监和出色的企业家,并且帮助建造了 Adsense、Search Appliances和Cloud Apps等项目。Prabhakar是斯坦福大学社交网络研究中心教授,是让社交网络更智能、更具规模、更有效的研究发起人。
Urban Engines源自于Prabhakar关于城市拥堵的研究和对供需关系的理解,人们如何运用公共交通以及如何从高峰到非高峰期转换人们的行为。Prabhakar和Shivakumar发明了SaaS,可以用来监测交通状况。
Urban Engines软件使用的数据来自城市运输系统,通过空间分析重现城市运输系统。软件还能帮助实施奖励计划,以奖励的方式增加增加公共交通参与,缓解高峰期拥堵。
这些数据来源于一种简单的标记方式:当人们刷卡进出火车站或者汽车站时,铁路和公路系统会收集数据作支付结算,但不作交通分析。Urban Engines将量化这些数据,然后分析每条公交和火车线路的拥堵程度、等待时间、历史数据等讯息。
Prabhakar将这视作“群体感应”,通过感应人们的刷卡行为来确定他们所处位置,这听起来有些复杂,事实上也是如此,团队成员对算法和技术进行了多年的研究 。Shivakumar表示:“运输部门知道火车的具体位置,却不知道人在哪儿。”
Urban Engines软件获交通部门批准,一旦部署到云端,它就能知道哪一站上来了多少乘客,哪一列火车已经不堪重负等信息。更有趣的是交通部门可以与历史数据进行比较,获知应该增加哪些线路或者增加哪条线路的公交车数量。
Urban Engines已经进行过一些测试。通过与世界银行合作,巴西圣保罗正在使用Urban Engines的解决方案改善交通系统,新加坡使用Urban Engines缓解高峰期的交通压力,而华盛顿特区已经将其完全应用于铁路系统。
Urban Engines表示,他们想要让世界上100多个人口众多的城市的运输变得更有效,公司的系统会发挥很大作用。通过这个软件,可以理解交通系统的运行,为决策提供参考,从而节约时间和金钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05