
大数据将怎样改变互联网
信用卡公司通过客户信息,能迅速发现资金异动,向持卡人发出提前警示;能源公司利用气象集纳分析,能够轻松选定安装风轮机的理想地点;交管部门通过车流数据预测,能让市区拥堵时间缩短一半……
随着大数据产业蓬勃发展,大数据技术及应用逐渐渗透、融入社会各个领域,并且推动互联网等产业加快转型升级。如何充分释放和利用大数据蕴含的巨大价值,无疑成为当下的热门议题。
传统行业“掘金”大数据
怎样给大数据下定义?“通俗地说,大数据就是量很大的数据,大到单个计算机无法处理。”工业和信息化部软件司司长陈伟此前在接受采访时介绍,目前,全球数据量每18个月就会翻倍,而由于产业链涉及数据采集、存储、分析、挖掘以及流通服务,大数据不仅改变着互联网的商业模式,而且还将重构互联网产业格局,并将人类带入互联网的全新时代。
经过多年积累,现在不少保险公司已占有大量线下数据,并圈定大批低赔付人群样本。作为互联网企业代表的百度,正与保险公司发展“深交”,通过对保险公司数据科学建模,利用人工智能算法海量计算,将这批具备相同特征的群体挖掘出来,寻找低赔付人群的准确性已超过了85%。
随着“双11”电商节临近,快递业紧锣密鼓地开始准备“迎战”。与保险行业类似,物流行业也在积极拥抱大数据。阿里巴巴利用菜鸟物流雷达预警,去年“双11”货品预测率达到90%,“双11”期间2.78亿订单仅用10天时间便已发送到位。
“因物流与商家供需信息不匹配,前年或者更早时货物送达时间甚至超过1个月,有人‘双12’还没收到‘双11’的货品……”阿里数据经济研究中心秘书长潘永花进一步介绍,结合商家销售数据和物流公司快递数据综合分析,可为物流公司提供智能物流解决方案。
伴随人们大步迈进互联网时代,各传统行业不断争相拥抱“大数据+”,云、网、端逐渐成为各行业重要基础设施体系。潘永花认为,从“端”的角度来看,除智能终端外,还有越来越多的App;从“网”角度来说,互联网、物联网、云和大数据都将是核心资源,而正是基于云、网、端的基础,才有了“互联网+”各种行业的化学反应。
巧用数据资源释放大能量
有人说,“IT”代表着过去,“DT”才代表着未来。这里所说的“DT”正是指的数据技术。也就是说,当下大数据核心技术成了诸多产业的发展驱动力。“人们逐渐意识到,数据是推动产业发展的动力,也将为今后各行业提供全新服务。它不再仅是业务的附属品!”Teradata天睿公司大中华区副总裁姜欣表示。
根据大数据产业发展需求,不少互联网企业不仅巧用大数据助力自身发展,而且也尝试逐渐向外界开放数据资源,推动传统企业在“互联网+”的大潮下转型升级。
“大数据与行业数据融合,可以产生‘核聚变’,迸发出新能量。”百度公司高级副总裁王劲告诉记者,百度正通过大数据技术识别各类目标客群,进行多维度分析客群搜索趋势、搜索行为、兴趣偏好,助力企业了解行业趋势、加强用户洞察、提升营销效果;此外,系列数据资源还能为网上舆情提供实时监控分析。
王劲介绍:“随着互联网用户趋于交互方式寻找服务需求,百度大数据预测未来5年使用语音、图像来表达需求的比例将超过50%。百度在语音识别、图像识别、自然语言处理等前沿技术领域,正在有针对性地进行重点突破。”
从政府角度看,如果能盘活政府机构大量数据资源,将更有利于融合并利用外部智慧,提升政府公共服务创新能力,提升社会运行效率。“政务大数据可让公众、企业深入参与政府治理,使政府与公众充分互动,实现政府对公众服务的精准化、个性化,使政府从单纯的管理角色向多元共治方向变革。”潘永花说。
大数据瓶颈消除在望
“目前,大数据产业发展主要遇到的障碍是数据的共享与互通,以及如何保障数据安全。”百度有关负责人表示。
潘永花坦言,目前我国大数据人才缺口大,相关的创新创业人才有待培养,而且我国也缺乏像发达国家一样的“大数据国家战略”以及“开放政府政策”,在标准、规范方面还存有各自为政的尴尬。
陈伟指出,国务院印发的《促进大数据发展行动纲要》提出要“加快政府数据开放共享,推动资源整合,提升治理能力”,此举不仅开启了数据共享的大门,而且也对各行业、各企业间进行数据互通起到引导示范作用,将有利于打破数据共享互通中的发展障碍。
同时,数据安全、数据共享等话题同样备受关注。“这是一场‘革命’,将对各行各业带来深刻影响,甚至改变我们的思维方式,但同时它也引发‘数据暴政’的担忧……”牛津大学教授维克多·梅耶-舍恩伯格在《大数据》中的这句经典话语,曾被业界津津乐道。
为保证数据安全,技术层面不容忽视。“从大数据存储、应用、管理以及隐私保护等方面应层层把关,有针对性地应对安全威胁。”王劲告诉记者,目前,百度综合采用随机干扰、散列、K-匿名、泛化等多种隐私保护手段,对用户数据实现了完全的数据脱敏处理,再供应业务方和合作伙伴进行使用,防止用户隐私泄露。
有人时常提及,“数据安全三分靠技术,七分靠管理”。潘永花对此也深表认同:“从运营管理层面上说,互联网企业须对数据安全有严格规范标准,建立数据安全保障策略以及各项应急机制。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04