京公网安备 11010802034615号
经营许可证编号:京B2-20210330
那么多大数据公司“买数据” 怎么保护数据隐私?
数据是什么?是金子,也就是钱啊!
最近统计来看,全国已经有三百多家大数据公司,但在大数据发展初期这个情况下,国内大数据交易的现状是:供不应求!所以各种形式的数据交易公司都出来“卖数据”赚钱了;
还有个趋势是,无论是国内、国外,大数据集中在大厂中,更可气的是还通过兼并使数据公司越来越少,构成商业壁垒。so,数据聚集在一小部分企业手中,创业公司纵使有好的想法,拿不到足够大的数据也无济于事。这么看来,数据就是命啊!
所以,在这几天举办的第九届中国大数据技术大会上,也特意开了数据市场及交易分论坛,给大家答疑解惑。在此摘一些观点来分享。
其实,国内大数据交易的现状除了供不应求,还非常不均衡。
具体说来,数据堂副总裁肖永红介绍了数据的四个特点:
第一个特点是头重脚轻。互联网企业和高科技企业在大数据产业里面起领跑作用。因为他们有大量的用户数据,比如百度,有大量用户搜索数据;比如阿里,掌握了全国海量的电商行为数据,比如腾讯,也掌握了全部的社交数据。有了这些数据以后,就可以“携数据以令诸侯”。(这个重要系醒表现在:阿里已经在和一些地方政府、甚至和国家层面合作;现在可以根据每年双十一,或者淘宝的交易量,反过来推测中国经济运行的状况。)
第二个特点,目前大数据产业分布偏重在应用环节。
第三特点,应用领域行业分布还不够广,集中于电商行业,在传统行业非常少。
第四特点,缺乏综合性的数据聚合流通平台。虽然这一年两年内冒出了很多,但是远远不够。
当然,了解了数据特点,就能更好地寻找数据源。那么数据都在哪里,如何收集?
对应上文所说,首先是互联网企业。很多数据都是在各个行业领域的IDC或者数据中心的服务器上面;
其次,在电信运营商领域。大家已经意识到,运营商的用户行为数据特别是移动用户的行为数据,非常有价值;
并且,科技部和财政部在四五年前,提出了一个全国科学数据共享基础工程,围绕人口健康、交通科学,以及地理、地球、气象等方面,已经做了很多科研和科学领域的数据共享平台;
针对传统行业数据收集,可以利用众包的形式,以及利用传感器记录、采集线下分散的数据;
另外最近还有一个趋势,很多高校和科研机构也在收集大量的数据,因为他们做项目也需要大量的数据支撑;
另一方面,现在很多个人、公司都在找数据,也愿意花钱买,所以无论是官方的还是企业的数据交易市场,在今年格外火爆。
因此,另外一块就是数据源变现的形式。这几年商业数据或者政府大数据变现项目也有大量数据。
比如官方的,如北京市政务数据资源网、九次方在“中国数都”贵阳筹建“贵阳大数据交易所”、中关村“数海”大数据交易平台、北京软交所旗下“北京大数据交易服务平台”,以及各地风起云涌的大数据交易平台、交易所,如亚信和武汉市政府长江大数据交易所,都是开放了一些官方数据,由政府背书,但还是没有配套法律规范。
企业层面,有登上新三板的数据堂,以及百度API Store 聚合平台、聚合数据。
但是,数据交易需求虽然很大,但是毕竟没有配套法律规范。因此,在交易流通中存在很多问题。中国信息通信研究院高级工程师韩涵总结,数据流通交易面临两个极端:一是黑市交易无序流动,二是数据冻结无法流动。
首先,来看看数据交易流程中会遇到什么问题?
来自亚信数据的龚静介绍,总结来说,包括四个方面:寻找成本,需要很快的去找到对方;实施成本,数据流通过程中涉及到很多协议、数据格式,需要方便的工具来做协议的转换;信任成本,需要监管渠道,中介不会窃取数据;外部成本,即隐私数据要得到保护。
因此,为了规范交易流程来保护各方利益,目前数据流程模型,大体来说有三种:
第一种是最简单的,数据供需双方直接进行交互。但流通中四个成本都非常高。
第二种,加入数据中介。寻找成本变低了,但信任成本增高了。
第三种流通模型,是再引入一个产权人的角色。可以保障第三方利益,降低外部成本。
所以,每一方的利益都能够得到保障,数据流动才能真正在全社会流转起来。
其次,针对数据壁垒问题,怎么破?
最近有一个词汇比较流行——数据的民主化,像政治上的民主,能够做到数据的民主,用数据激发创新。还有共享经济,包括对数据价值的共享,亚信也提出了一个想法:数据去中心化。
意思是,在数据流动的过程当中,整个数据不会经过任何一方,而是直接在数据流动的参与方之间进行流动。这种数据去中心化的数据流通方式,和P2P下载、电话交换网的模式类似:参与方的认证、计费、公证的环节,可以由数据中介平台来完成。完成之后,在数据需求方和数据提供方之间进行数据的流动。
此外,完善的流程还需要保护数据隐私。
因此,平台还要使数据可用不可见。数据双方各把加密之后的数据放到这个数据交易的中介平台上来,在这个平台上进行碰撞,碰撞之后,把这个结果进行解密,返还给双方,然后再把数据销毁;数据版权要保护起来。当有侵犯到你版权的数据在市场上流动时候,你可以通过平台来发现它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31