京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析提升电子商务转化率
消费者网上购物的平均时间,拿去年的6月跟今年的6月比较,从20分钟减少到了17分钟。另一方面,客户停留在网站上的时间减少的同时,多数电商的转化率只有0.5%左右。
在注意力越来越分散的今天,99.5%的客户是流失掉的,电商要如何去了解这群客户的购物行为特征,并且使之转化为订单量。
困境:客户停留时间在减少
时间是一个很稀缺的资源
对于电商来讲,人均浏览网页的时间,就是正在变得稀缺的竞争资源。
从图二可以发现,每天覆盖的人数,购物网站(包括淘宝)的流量增长是68%,但是人均当天在线浏览的时间(在电商这边)减少了16%。网上购物的时间,拿上一年的6月跟今年的6月比较,则从20分钟减少到了17分钟。
我们细致地看一下各家网站(见图三)会发现同样的情况:京东、卓越、当当、凡客、梦芭莎,这几家代表性的B2C中,我们发现大部分流量是增长的,但是如果我们看一下这些网站人均的当日浏览时间,京东上一年是10分钟左右,今年则只有8分钟左右。那么,这是由于现在的网站找东西更有效,所以浏览网站的时间更少一点,还是其他原因?
其实,我们可以用其他的数据挖掘一下,到底是网站的有效性小了,还是总的时间少了?我觉得其中一个很重要的东西是每个网站在争取一个顾客进来以后,它在8分钟里做了哪些事情。
电商的眼球经济只有17分钟,这是总的平均数,也即平均每个网民在电子商务网站会停留17分钟。淘宝商城、京东商城,如果我们真的把它们浏览的时间拿走的话,你会发现其他的网站所拿到的流量就会很小。
而用户停留在网站上的有效购物时间减少的同时,电商的转化率却普遍不是很高。
从访问到购物车,平均来讲,100个人进来,只有4.5个人把东西放到购物车,有96个人不会把东西放到购物车,那这96个人干吗呢?
另外,我们可以看到,京东商城下单到在线支付的百分比是29.4%,凡客诚品是29%,一号店是8.3%。
追寻流失客户购物行为特征
先让我们看一下图五的数据。
图五这个数据蓝色部分显示的35%,是指只有35%的人是今天来、今天买的;65%的人是以前来、今天才买的。这里的65%说的是新客户,不是老客户,新客户今天来到这个网站,今天就买了。从下往上第二格红色,是昨天来、今天买的客户;绿色的是2-6天前来的、今天才买的客户;最高的那个橙色是21天之前来的、今天买的顾客。当然,这个数据,每个行业都有差别,不完全一样。
从数据我们可以发现,客户从访问页面到最终付款,所用的时间是不一样的。有的用户是第一天下单,隔了一个星期才付款。尤其是一些非标准、无品牌的产品,消费者比价情况普遍,导致从访问到下单购买时间更长。(我为此访谈过部分国内电商,数据基本一致但百分比不一样。)
所以,电商业者会发现,当天来到网站的人不能完全用漏斗(图六)来看,因为他来之前压根就没想买你的东西,他只是过来看一下这个产品便宜还是贵。面对这样的顾客,你就更需要知道他们到了网站之后做了什么事情。
首先,网站可以问,客户在下单之前浏览过哪些页面和产品,他的浏览历史非常重要。
其次,要了解清楚,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
第三,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第四,多少客户把产品放进购物车隔天才付款的。
此外,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别是从搜索、分类购物和引导购物等渠道进入,作为电商来讲,应该了解他们从哪个渠道进入到产品页面、三个渠道进入之后付款的比例分别是多少,从中找出问题所在。
这一思路与网站整体的架构相关,目前国内关注还比较少,但是先可以尝试用这个思路去看存在的问题。
最后,最想告诉读者的是,用这些简单的方法,就能知道没有付款的消费者的购物行为,只有了解他们的购物行为特征,才可以让这溜走的99.5%的用户产生付款,从而提升网站转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08