
大数据如何创造价值
数据正形成一股湍流,渗透进全球经济的各个领域。但这到底意味着什么呢?尽管很多人疑惑重重,将大数据看成是对他们隐私的一种入侵。但从好的一面来看,大数据不仅有益于私人企业,也有益于国民经济及百姓。
比如,如果美国医疗可以创造性和有效地运用大数据来驱动效率和质量,每年来自行业数据的潜在价值,估计可以超过三千亿美元;其中三分之二将体现为国民医疗开支减少8%左右。在私营行业,充分使用大数据的零售商有可能将营业利润率提高超过60%。在欧洲发达经济体中,若政府机关使用大数据,估计仅仅在改善运行效率上就可以节省超过一千亿欧元(1490亿美元),这还不包括以大数据为杠杆减少诈骗、失误和税收缺口。
如今日益先进的技术应用于各类软件,配合持续增长的马力,从数据中提取有价值信息的方式也会显著完善。用大数据在全球经济中各行业创造价值的途径很多。私人公司、政府和公共部门,都有很大的机会利用大数据来提高效率和提升价值。
麦肯锡全球研究院估计2010年全球企业储存在磁盘上的新数据超过7艾字节,而消费者在个人电脑和笔记本等设备上储存的新数据超过6艾字节。1艾字节相当于美国国会图书馆储存信息的4000多倍。
大数据现在触及到全球经济的每个行业。像实体资产和人力资本等生产中的其他要素,大数据是诸多现代经济活动顺利开展不可或缺的部分。估计截至2009年,几乎美国经济的所有行业里,每个拥有超过1000名员工的公司至少平均储存200兆兆字节的数据(即1999年美国零售商沃尔玛仓库数据的两倍)。
近期内最有潜力通过使用大数据来创造价值的地方是那些最发达的国家。展望未来,发展中国家只要条件适当,将会有巨大潜能利用大数据。比如,亚洲已经成为个人定位数据产生的主要区域,因为那里有大量的手机在使用。2010年,中国估计有8亿多部手机在使用,超过其他国家。此外,发展中国家和地区的一些个人企业在数据使用上比平均水平要先进。而且部分组织可借助其远程存储和处理数据的能力。
在基础科技、平台、数据处理的分析能力和使用者的行为(越来越多的个体经历着数字化的生活)的演变和创新驱动下,大数据的未来发展有无限可能。
这里列举5个大数据广泛适用,能创造质变性的价值并影响机构的设计、组织和管理的方面。
首先,大数据能提高透明度。仅仅让相关的利益共享者尽可能简单及时地使用大数据就可以创造极大的价值。例如在公共行业,让原本孤立的部门间轻易地共享数据,就能明显减少搜索和处理时间。在制造业中,整合研发、工程和生产单位数据以实现并行工程,就能显著缩短上实时间并提高质量。
其次,让发现需求、寻求变化和提高性能的实验成为可能。当组织机构创建和储存更多数字形式的业务数据时,他们可以收集更多准确和细节的性能参数(实时或近乎实时),从产品库存到人员病假等任何事物。
再次能针对细分人口采取定制行动。大数据允许组织机构高度细分市场,专门定制产品和提供精准服务来满足各种需求。这种方式在市场营销和风险管理领域众所周知,但在其他行业可能是革命性的——比如在形成一种同等对待所有群众的道德观的公共行业。然而即使是已经使用市场细分多年的消费品和服务公司,也开始部署复杂的大数据技术来瞄准促销和广告推广。
还能用自动化算法取代或支持人类决策。复杂而巧妙的分析可以大幅度改善决策、降低风险和发觉有价值的观点。对组织来说,像这样的分析应用,从税务机构能够使用自动化风险引擎标记需进一步检查的候选人,跨越到零售商可以利用算法优化类似于自动库存微调和专柜店与在线销售实时价格响应的决策过程。在某些情况下,决策不一定是自动的,但通过使用大数据技术和科技,而非小样本的个人处理和理解电子表格来分析海量、完整的数据会增强决策。决策也许会变得不同,但一些组织已经着手通过分析来自顾客、员工,甚至嵌入在产品内的传感器中的完整数据来决策。
最后,大数据有助于革新商业模式、产品和服务。大数据能够让公司创造新产品和服务,强化现存功能,并创建全新的商业模式。制造业正在运用来自实际产品使用的数据,来改善下一代产品的发展并建立创新型售后服务。从导航到基于人们驾驶汽车的位置和方式的财险定价,实时定位数据的出现已经创造了一个基于定位服务的全新篇章。
可以预见,大数据应用将成为个体公司竞争和增长的关键基准,也将促进新一波的生产力增长和提高消费者剩余。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05