
大数据分析:食品监管曝了谁的光
大数据时代大数据的价值不可估量。例如,被誉为未来世界的“石油”的数据,对其分析挖掘利用能创造巨大的物质财富和社会价值。然而,数据在大量聚集的同时,信息泄露也如影随形,无处不在,使得个人信息安全面临严重威胁。近几年,大规模数据泄露事件时有发生,令网民心有余悸。可以说,大数据时代既为我们带来了巨大的经济潜力,又对公民个人信息安全提出了严峻的挑战。因此,大数据时代亟须加强个人信息的法律保护。
大数据时代个人信息法律保护的现状
在个人信息的法律保护方面,美国、欧盟、法国等国家和地区走在前列,主要有分散立法和集中立法两种模式。美国采取分行业保护的分散立法模式,保护个人信息的法律规定散见于各部门法,如《电子通讯隐私法》《金融隐私权法案》《有线通讯隐私权法案》等。欧盟采取集中立法模式,对保护个人信息进行集中立法,统一规定个人信息保护相关法律问题。为满足保护个人信息的现实需求,我国近年来也加快了对个人信息保护方面的立法实践。在我国的《刑法修正案(七)》《侵权责任法》《电子签名法》《居民身份证法(2011年修订)》《消费者权益保护法(2013年修订)》和《关于加强网络信息保护的决定》等法律法规中,都含有个人信息保护的规定。同时,国务院各部委还制定了一些关于个人信息保护内容的部门规章,如工业和信息化部的《电信和互联网用户个人信息保护规定》《信息安全技术公共及商用服务信息系统个人信息保护指南》,工商总局的《网络交易管理办法》等。此外,不少地方基于本地实际情况还出台了相关地方性法律条例,如《深圳经济特区互联网信息服务安全条例》。
大数据时代个人信息法律保护的困境
个人信息的法律边界不明。一是个人信息的外延边界不明。在国内现行的法律法规中,并没有法律对个人信息进行明确界定。二是个人信息的区分边界不明。在我国个人信息的法律保护的现状中,并没有对个人信息和个人隐私进行明确区分,不利于对二者进行区分保护。三是个人信息的权利边界不明。在大数据时代,用户使用网络时不可避免地会将个人信息的占有权转移给服务商,经过多重交易以及多个第三方渠道的介入,难以厘定个人信息的权利边界。
个人信息保护法律体系不完善。尽管我国已制定了多部涉及个人信息保护的法律法规以及条例,但同当前个人信息保护的现实需求还有差距。一方面,个人信息保护领域的立法缺乏系统性。在我国现行的法律法规以及地方条例中,并未对个人信息保护进行综合立法。2012年全国人大常委会出台的《关于加强网络信息保护的决定》仍旧只是规定了个人信息保护的基本原则。另一方面,个人信息保护法律的操作性不强,需要配套的法律法规以及操作性强的实施细则。
个人信息保护执法机制滞后。首先,我国个人信息保护目前处于多部门监管状态,公安部、工信部、全国工商局、商务部、中国人民银行、银监会、保监会、证监会等都负有个人信息监管职责,多头监管容易使得监管信息沟通不畅、监管无序。其次,执法依赖事后监管,缺少事前监管相关企业、单位在个人信息安全保护方面的制度构建以及执行情况,难以从根本上杜绝和防范非法使用的行为。最后,缺乏企业个人信息泄露问责机制,相关处罚只对个人不对企业,不能真正起到警示作用。
大数据时代个人信息法律保护的路径
明确个人信息的法律边界。明确个人信息的外延边界。从范围上看,个人信息指的是能够识别某个特定自然人身份的信息以及需要集合起来才能推断出特定某个人身份的信息。明确个人信息的区分边界。要明确区分个人信息与个人隐私,前者须具备身份识别性,而后者通常是指公民个人生活中不愿向他人公开或为他人知悉的秘密。在明确区分的基础上,区别对待,严格保密严禁搜集的个人隐私,防止滥用个人信息。明确个人信息的权利边界,应当在相关法律法规中明确用户的个人信息属于私人资产,相关企业不得擅自使用。
完善个人信息保护的立法体系。在现有国家和地方个人信息保护立法实践的基础上制定个人信息保护的专门法,厘定大数据时代个人信息保护的基本原则和规则,对企业如何保护收集来的个人信息作出明确规定,明确个人的信息数据准入权、删除权、修改权、救济权等内容,完善个人信息违法行为的责任体系。完善与个人信息保护相关的法律法规,针对垃圾电子邮件、手机垃圾短信等与个人信息保护密切相关的问题制定法律法规,为大数据时代个人信息的法律保护提供多角度、全方位的立法支撑。完善个人信息安全相关法律的实施细则,细化个人信息保护相关法律的基本规定,提高个人信息法律保护的可操作性。
优化个人信息保护的执法机制。设立个人信息监督管理机构。为避免多头监管带来的问题,可以设立跨部门的个人信息保护委员会,统筹规划,专司其职。强化个人信息保护的事前监管。在大数据时代,一旦保护个人信息被泄露,其被非法使用可能带来诸多无法弥补的危害和危险,保护个人信息不能只立足于事后查处,更应着眼于事前预防,从根本上预防非法使用个人信息的行为。建立企业个人信息泄露问责机制,加大对涉事企业的处罚力度,增强企业对用户信息安全维护意识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08