京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 数据驱动如何集成?
数据集成是指将来源于不同系统的数据组合在一起,供业务用户研究不同的行业行为及客户行为的数据处理方式。在数据集成应用早期,数据仅限于交易系统及其应用。业务决策的制定以决策平台为指导,而有限的数据集提供了创建决策平台的基础。
数据容量与数据类型在过去三十年里大幅增长,数据仓库技术从无到有,基础架构和技术的发展满足了分析和数据存储需求。这一切彻底改变了数据集成的前景。
传统数据集成技术主要关注于架构和相关编程模型的ETL、ELT、CDC和EAI类型。然而,在大数据环境里,这些技术需要根据规模和处理复杂度等需求进行修改,其中包括需要处理的数据格式。实现大数据处理需要两个步骤。第一步是实现数据驱动的架构,其中包括数据处理的分析和设计。第二步是物理架构实现,我们将在下面的章节介绍这个步骤。
数据驱动的集成
在建造下一代数据仓库的技术方法中,企业中所有数据首先会根据数据类型进行分类,也会考虑到数据本身的性质及其相关的处理需求。数据处理过程将会用到内置在处理逻辑中并且整合到一系列编程流程中的业务规则,数据处理会使用到企业元数据、MDM和语义技术(分词技术)等。
图10.3显示了各类数据的入口数据处理过程。这个模型首先基于数据的格式和结构划分数据类型,然后再进行ETL、ELT、CDC或文本处理技术中各个层次的规则处理。下面,让我们来分析一下数据集成架构及其优点。
图1
数据分类
如图1所示,数据可以粗略地划分为以下分类:
事务处理数据。比如典型的OLTP数据。
Web应用数据。比如组织开发的Web应用所产生的数据。这些数据包括点击流数据、Web销售数据及客户关系和呼叫中心通话数据。
EDW数据。这是来自组织当前所用数据仓库的现有数据。它可能包括组织中各种不同的数据仓库和数据集市,它们存储和处理着供业务用户使用的数据。
分析数据。这些数据来自于目前组织部署的分析系统。现在这些数据主要基于EDW或事务数据。
非结构化数据。这个大分类包括:
文本:文档、笔记、记事和通讯录
图像:照片、图表和图形
视频:与组织相关的企业和客户视频
社交媒体:Facebook、Twitter、Instagram、LinkedIn、论坛、YouTube和社区网站
音频:呼叫中心通话、广播
传感器数据:包括来自营业范围相关的各种设备的传感器数据。例如,能源公司会产生智能测量仪表数据,而物流与配送供应商(UPS和FedEx)产生的是卡车和汽车传感器数据。
天气数据:现代B2B和B2C公司用天气数据分析天气对业务的影响;它已经成为预测分析的重要元素。
科学数据:应用于医学、制药、保险、医疗和金融服务,这些领域都需要复杂的数据计算能力,其中包括模拟和生成模型。
股市数据:许多组织用它处理金融数据,预测市场趋势、金融风险和进行精算计算。
半结构化数据。其中包括电子邮件、演示文稿、数学模型、图形和地理数据。
架构
在确定和整理好不同的数据类型之后,就可以清晰确定各种数据特征——包括数据类型、关联的元数据、可以标识为主数据元素的重要数据元素、数据复杂度及拥有和管理数据的业务用户。
工作负载
处理大数据的最大需求是前面章节所介绍的工作负载管理。
图2
有了数据架构和分类,我们就可以分配可以执行该类数据工作负载需求的基础架构。
我们可以根据数据容量和数据延迟时间将工作负载大体分成4类(图2)。然后,我们再根据类别将数据分配到物理基础架构层进行处理。该管理方法可以为数据仓库的各个部分创建一种动态可扩展需求,它们可以高效利用当前及未来的新基础方法。在这个时候,一定要注意的关键问题是要保持处理逻辑的灵活性,使它能够在不同的物理基础架构组件上发挥作用,因为数据是根据处理紧迫性进行分类的,这样相同的数据就可能会被归类到不同的工作负载上。
工作负载架构将进一步决定混合工作负载管理的条件,来自不同工作负载的数据会一同处理。
例如,通常我们只需要在一个环境中处理一种数据及其负载,如果将高容量低延迟数据和低容量高延迟数据放在一起处理,数据处理环境就会面临多样化压力。同时发生或高频的用户查询和数据加载会进一步加大数据处理的复杂性,情况可能会很快失去控制,然后影响整体性能。如果一个基础架构同时处理大数据和传统数据,再加上这些复杂性,那么问题会更加严重。
划分工作负载的目标是确定数据处理的复杂性,以及如何降低下一代数据仓库的基础架构设计的风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05