
大数据:千秋万载 一统江湖
“大数据”严然已经成为当下最为火热的IT行业的词汇之一,它伴随着“云时代”的到来而显得更加重要。
从定义上讲,大数据(bigdata),或称巨量资料,指的是所涉及的资料数据规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据(Bigdata)通常用来形容一个公司创造的大量非结构化或半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。因此,大数据处理需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。
我们已经跟随“云时代”来到了“大数据时代”。在大数据时代,时间同步技术必定将是整个大数据处理系统的重要支撑和保障。时间同步技术使数据产生与处理系统的所有节点具有全局的、统一的标准时间,从而使系统中的所有各种消息、事件、节点、数据等具备正确的逻辑性、协调性以及可追溯性。
大数据产生与处理系统是各种计算设备集群的,计算设备将统一、同步的标准时间用于记录各种事件发生时序,如E-MAIL信息、文件创建和访问时间、数据库处理时间等。大数据系统内不同计算设备之间控制、计算、处理、应用等数据或操作都具有时序性,若计算机时间不同步,这些应用或操作将无法正常进行。大数据系统是对时间敏感的计算处理系统,时间同步是大数据能够得到正确处理的基础保障,是大数据得以发挥作用的技术支撑。大数据时代,整个处理计算系统内的大数据通信都是通过网络进行。时间同步也是如此,利用大数据的互联网络传送标准时间信息,实现大数据系统内时间同步。网络时间同步协议(NTP)是时间同步的技术基础。网络时间协议由一系列注释请求文件定义,当前使用的有三种:日期协议(RFC-867)、时刻协议(RFC-868)和网络时间协议(RFC-1305)。网络时间协议NTP(NetworkTimeProtocol)是当前最复杂最优良的网络时间协议。大型计算机和工作站的操作系统中常包含NTP软件,客户软件可作为后台任务连续运行,从时间服务器得到时间信息,它也可以设置去查询多个服务器,获得多个时间结果,然后进行平均,提高同步精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04