如何通过招聘数据分析来挖掘商业洞察
人越来越难招了!”这是广大HR们近两年真实的内心写照。对于那些招聘需求量大、用人部门多的企业来说,更是如此。所有部门、所有层级加起来动辄上百个职位,还要区分关键职位,不同职位的招聘难度又各不相同,业务部门刚提完需求,领导就开始催问招人进度;用人部门一边急着要人,一边又频繁变更招聘需求……想想真让人绝望!
在这个凡事讲求效率和价值的时代,Recruiter们越来越体会到数据分析的价值:只有超越简单的招聘工作汇报,透过日常招聘数据,提炼总结,及时发现问题,深入挖掘原因,才能真正让招聘工作摆脱例行公事似的糊涂泥沼,不断得到优化,实现更高的效率。
招聘数据分析对HR的价值
一、以过程化数据展现招聘工作效果,赢得信任
HR们每天置身于繁琐、重复的招聘工作中,忙得焦头烂额,却不清楚投入了多少,取得了哪些成果?于是,一旦招聘效果不理想,面对用人部门的诘问时,HR往往理屈词穷,百口莫辩。由此可见,招聘过程数据化、招聘成果可视化是何等重要!
对于核心岗位的招聘更是如此。关键人才招聘难已成为普遍现象,招贤纳士不再只是HR的一己之任也成为共识,用人部门在招聘过程中的配合度极大影响着招聘结果,如果用过程化的数据记录用人部门的投入与贡献,就可以有理有据地检视HR与用人部门的待改善之处,从而明确责任、理清改善方向,赢得领导的信任与支持。
二、提炼总结日常数据,发现招聘规律
随着数据时代的来临,招聘分析已不仅仅停留在记录过程、撰写总结报告的层面。成功招到一个核心职位的员工需多长时间?哪个环节效率最低?各职位的需求趋势如何……针对这一系列问题,持续的日常数据追踪可以给出完美答案,而一旦发现这些规律,必将为优化未来工作带来巨大的价值。
比如,虽然有经验的HR看到收取的简历量,就能判断此职位的招聘周期,看到面试通过率,就可判断面试官的用人标准。但感性的经验难以全面指导和干预招聘进程,当从数据中发现规律后,规律就可指导整个招聘过程。
招聘数据分析的统计指标
招聘数据统计与分析主要包括四大类指标:关键绩效、招聘过程、渠道效果和招聘成本。各类指标都有相应的计算方法和展现方式,当然,不同企业的取值方式和展现形式也不尽相同。
招聘数据分析示例
一、招聘漏斗分析
每个HR都希望快速为企业找到足够合适的人,但近年来,大范围的人力资源缺口逐步增大。广告发布后收不到简历、面试通知发出去等不来人、接受了offer最终未入职……再加上入职后在试用期内被淘汰的人,完成招聘任务谈何容易?到底是哪个环节出了问题?要让招聘环节的效果有所改善,就需要深入分析招聘过程,这就要用到招聘漏斗分析——通过实时跟踪过程数据,第一时间发现问题,以便采取相应举措。
招聘漏斗是指通过招聘流程各阶段的状态,逐渐淘汰不合适的应聘者,把合适的应聘者层层筛选出来的过程。
基于招聘漏斗分析,可以统计各个环节转化率,例如:
1、简历有效率=【电话面试】/【简历初筛】
2、初试到场率=【初试到场人数】/【初试人数】
3、复试通过率=【复试通过人数】/【复试人数】
4、Offer接受率=【接受offer人数】/【发送offer人数】
转化率直观反映了招聘过程的效能和效率,让招聘过程关键环节的问题一目了然。例如,当招聘完成率不达标时,可追查offer接受率的情况。如果发现拒绝offer的人数较多、offer接受率明显低于标准时,就需进一步分析放弃offer的原因,以更好地洞察问题,支持决策。
Offer接受率数据分析的推导模型
二、招聘周期分析
核心职位的招聘周期过长,是很多HR深感头疼的问题。在现有招聘方式下,成功招到一个关键人才需要多长时间?从发布信息到人员入职,整个流程要多久?下一个阶段大概要招多少人?HR要明确了解这些信息,才能改善现状并提前准备。
三、招聘渠道效果分析
常用的招聘渠道是否足够有效,不仅涉及到渠道的贡献率,也涉及到各渠道的投入产出比,这些数据也是HR亟需关注的。
科学的招聘数据分析,可以帮助企业在整个招聘流程中及时了解各职位的招聘进度。对于特别重要的职位,有经验的HR通常能够根据数据预判完成情况。这样一方面可全面把握招聘情况,另一方面能够尽早推进和干预招聘过程中的重点与难点环节,从而保证整个招聘活动的顺利进行。应用已有的数据支持决策,需要一套科学的理论基础:
HR要想更好地完成招聘工作,只盯着眼前的任务、被动接受指示是远远不够的。关注招聘过程中的数据,追踪并深入分析数据背后的规律,直至用数据指导行动决策,才能从招聘困局中解放出来,把问题控制在可预期的范围内。富有创造性的变化,就从关注招聘数据开始。
为帮助HR以数据驱动招聘工作,人才管理软件云服务领导者北森上线了国内首款人才管理SaaS软件的报表分析平台BTI(BeisenTalentInsights),已全面嵌入北森招聘管理系统,重新定义数据分析模式。系统提供任意拖拽海量数据、自定义计算字段、移动端报表订阅等功能,覆盖招聘全业务流程的数据字段,进行人才全生命周期的分析与预测,满足企业对招聘数据的统计、分析及灵活配置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27