
如何通过招聘数据分析来挖掘商业洞察
人越来越难招了!”这是广大HR们近两年真实的内心写照。对于那些招聘需求量大、用人部门多的企业来说,更是如此。所有部门、所有层级加起来动辄上百个职位,还要区分关键职位,不同职位的招聘难度又各不相同,业务部门刚提完需求,领导就开始催问招人进度;用人部门一边急着要人,一边又频繁变更招聘需求……想想真让人绝望!
在这个凡事讲求效率和价值的时代,Recruiter们越来越体会到数据分析的价值:只有超越简单的招聘工作汇报,透过日常招聘数据,提炼总结,及时发现问题,深入挖掘原因,才能真正让招聘工作摆脱例行公事似的糊涂泥沼,不断得到优化,实现更高的效率。
招聘数据分析对HR的价值
一、以过程化数据展现招聘工作效果,赢得信任
HR们每天置身于繁琐、重复的招聘工作中,忙得焦头烂额,却不清楚投入了多少,取得了哪些成果?于是,一旦招聘效果不理想,面对用人部门的诘问时,HR往往理屈词穷,百口莫辩。由此可见,招聘过程数据化、招聘成果可视化是何等重要!
对于核心岗位的招聘更是如此。关键人才招聘难已成为普遍现象,招贤纳士不再只是HR的一己之任也成为共识,用人部门在招聘过程中的配合度极大影响着招聘结果,如果用过程化的数据记录用人部门的投入与贡献,就可以有理有据地检视HR与用人部门的待改善之处,从而明确责任、理清改善方向,赢得领导的信任与支持。
二、提炼总结日常数据,发现招聘规律
随着数据时代的来临,招聘分析已不仅仅停留在记录过程、撰写总结报告的层面。成功招到一个核心职位的员工需多长时间?哪个环节效率最低?各职位的需求趋势如何……针对这一系列问题,持续的日常数据追踪可以给出完美答案,而一旦发现这些规律,必将为优化未来工作带来巨大的价值。
比如,虽然有经验的HR看到收取的简历量,就能判断此职位的招聘周期,看到面试通过率,就可判断面试官的用人标准。但感性的经验难以全面指导和干预招聘进程,当从数据中发现规律后,规律就可指导整个招聘过程。
招聘数据分析的统计指标
招聘数据统计与分析主要包括四大类指标:关键绩效、招聘过程、渠道效果和招聘成本。各类指标都有相应的计算方法和展现方式,当然,不同企业的取值方式和展现形式也不尽相同。
招聘数据分析示例
一、招聘漏斗分析
每个HR都希望快速为企业找到足够合适的人,但近年来,大范围的人力资源缺口逐步增大。广告发布后收不到简历、面试通知发出去等不来人、接受了offer最终未入职……再加上入职后在试用期内被淘汰的人,完成招聘任务谈何容易?到底是哪个环节出了问题?要让招聘环节的效果有所改善,就需要深入分析招聘过程,这就要用到招聘漏斗分析——通过实时跟踪过程数据,第一时间发现问题,以便采取相应举措。
招聘漏斗是指通过招聘流程各阶段的状态,逐渐淘汰不合适的应聘者,把合适的应聘者层层筛选出来的过程。
基于招聘漏斗分析,可以统计各个环节转化率,例如:
1、简历有效率=【电话面试】/【简历初筛】
2、初试到场率=【初试到场人数】/【初试人数】
3、复试通过率=【复试通过人数】/【复试人数】
4、Offer接受率=【接受offer人数】/【发送offer人数】
转化率直观反映了招聘过程的效能和效率,让招聘过程关键环节的问题一目了然。例如,当招聘完成率不达标时,可追查offer接受率的情况。如果发现拒绝offer的人数较多、offer接受率明显低于标准时,就需进一步分析放弃offer的原因,以更好地洞察问题,支持决策。
Offer接受率数据分析的推导模型
二、招聘周期分析
核心职位的招聘周期过长,是很多HR深感头疼的问题。在现有招聘方式下,成功招到一个关键人才需要多长时间?从发布信息到人员入职,整个流程要多久?下一个阶段大概要招多少人?HR要明确了解这些信息,才能改善现状并提前准备。
三、招聘渠道效果分析
常用的招聘渠道是否足够有效,不仅涉及到渠道的贡献率,也涉及到各渠道的投入产出比,这些数据也是HR亟需关注的。
科学的招聘数据分析,可以帮助企业在整个招聘流程中及时了解各职位的招聘进度。对于特别重要的职位,有经验的HR通常能够根据数据预判完成情况。这样一方面可全面把握招聘情况,另一方面能够尽早推进和干预招聘过程中的重点与难点环节,从而保证整个招聘活动的顺利进行。应用已有的数据支持决策,需要一套科学的理论基础:
HR要想更好地完成招聘工作,只盯着眼前的任务、被动接受指示是远远不够的。关注招聘过程中的数据,追踪并深入分析数据背后的规律,直至用数据指导行动决策,才能从招聘困局中解放出来,把问题控制在可预期的范围内。富有创造性的变化,就从关注招聘数据开始。
为帮助HR以数据驱动招聘工作,人才管理软件云服务领导者北森上线了国内首款人才管理SaaS软件的报表分析平台BTI(BeisenTalentInsights),已全面嵌入北森招聘管理系统,重新定义数据分析模式。系统提供任意拖拽海量数据、自定义计算字段、移动端报表订阅等功能,覆盖招聘全业务流程的数据字段,进行人才全生命周期的分析与预测,满足企业对招聘数据的统计、分析及灵活配置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13