
企业必须掌握的三种大数据
当前国内核心三大消费群体70后、80后、90后,三者是受不同时代影响成长起来的,而三者之间消费理念、经济能力,以及消费需求存在十分鲜明的差异化。但随着时间的推移,三大主流人群未来所呈现的消费潜力必然呈现递增趋势。70后逐渐老化;80后正步入结婚生子的而立之年;90后正成为社会主流的新青年,那么广大用户年龄层次的差异,必然导致产品需求必然呈现层次化改变。
怎么找准用户的核心需求?这必然要源于用户的信息接收方式、消费行为习惯、选择购买方式等综合因素,才能保证做出最精准的决策。这些精准聚焦的用户行为,必然是需要通过观察广大用户全局数据,才能更有效的抓取某一类用户特征。没有一个品牌能够赢得所有用户,但你所能满足的受众必然是源于广大的用户。所有用户代表是市场需求的整体,而某一类目标用户代表的是市场需求的部分,整体是由部分组成。对于企业来说,核心是要迎合某一类用户,但怎么决策却需要根据市场需求的全局,以应对某一类用户需求的变局。根据用户大数据,以宏观视角,做围观决定,才能更好的融入用户群体。
竞争对手数据:以敌动决定我动
竞争是市场发展的自然规律,也是市场走向成熟的驱动力。没有竞争的行业最终都将因为缺乏创新力而灭亡,或是被替代。每一个行业有大数据,每个企业也是如此,它所做出的任何决定,比如新品上市、营销活动、广告轰炸等,都会被大数据所纪录。一个行业的繁荣与否,与行业内竞争有着直接的关联。而竞争不仅能够推动产品质量、技术等综合提升,还能加速服务的升级,同时带来关联的整套体系进化。因而,企业不能忽视竞争,更不能任何竞争对手的新品,或是每一个新进入者,除非你已经占据明显的垄断优势。
未来的竞争,不仅仅是线下传统渠道,线上互联网也将角逐的新阵地。那么,怎么制定有效的品牌营销策略,怎么制定合理的市场推广策略,怎么布局差异化的渠道网络?所有的核心优势的建立,必须清楚地认识竞争对手所处在的位置和方向,否则如果实力不足以撼动对手,那就可能被对手绞杀。因此,企业必须时刻警惕竞争对手的动态,保证时刻掌握敌情变化,以敏锐的做出有力回击。这就可以通过大数据的定期监测,保证获取最新的竞争信息,但这一信息必然不是某个竞争对手,而必须是对自身能够造成威胁的所有竞争者。掌握这些最有力的实时数据,企业就能够游刃有余的根据敌动决定我动。
无线端大数据:以即时谋划大势
未来,每一个企业都不可能脱离互联网与信息化,而更不能脱离即将主宰便捷化信息获取与消费购买的无线端。不论是目前国内5亿智能手机用户这一庞大的规模,且还在呈上升趋势,并即将转化为全民普及的趋势。还是2015年双十一的销售数据无线端格外抢眼,占据60%的购买量。这两方面都预示着未来的消费生活将是无线端的天下,更是随时随地便捷体验的天下。无线端,这不仅是一个超强的传播载体,更是一个超强的购买平台,你所能想到的都能通过IT技术实现。在这种大趋势下,每一个企业都应该谨慎客观的去考虑无线端的使用。
与此同时,手机已经成功主宰了大众的日常生活,60%的大众已经沦为手机重度依赖症患者。而互联网将所有用户不断割裂,但无线端却能将这所有被各类的若干群体的特征整体的呈现出来,这就是它的独特而又强大之处。无线端能够反应所有商品的销售数据,各类平台的时效数据,甚至各种用户的地域、年龄、喜好等综合与单项数据。这一切都能会呈现在一个数据后台,最终变成合理分析的依据。因而,无线端,不仅是企业的传播平台,也是企业的销售平台,更是获取即时数据的保障。未来是快节奏更新的社会,企业只有掌握无线端大数据,才能掌控即时的局势,从而谋划未来的发展大势。
大数据不仅是一场技术革命,一场经济变革,也是一场国家战略的变革。它所带来的是产业革命,更关乎每一个企业的生死,你需要做的就是尽可能的掌握它,并正确利用它,而不是排斥。大数据是发展的必然,但绝对不仅限于当前的表面应用,未来将发挥更深层次的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04